8-1. 離散時間システムの安定性(演習)
離散時間システムの安定性の基準離散時間システムの特性方程式のすべての根(固有値、伝達関数の極)が単位円の内側に存在する場合、そのシステムは安定である。特性方程式の形は次のように表される。$$\phi(z) = a_0 z^n + a_1 z^{n-1} + \cdots + a_{n-1} z + a_n=0 \;\;\;(a_0 \gt 0) \;\;\;\; \cdots(1)$$ここで、\(z\) は複素数で、特性方程式の係数\(a_i\)に基づいてシス
2024/09/13 17:27