メインカテゴリーを選択しなおす
※離散時間系に関しては、 4. 連続時間システムの離散化 を参照願います。7-1. 差分方程式からパルス伝達関数へ離散時間システムの差分方程式が式(1)で与えられている。このシステムのパルス伝達関数を求めよ。$$y(k+n) + a_1y(k+n-1) + \cdots + a_{n-1}y(k+1) +a_n y(k) \\ = b_0 u(k+m) + b_1 u(k+m-1) + \cdots + b_m u(k) \quad(n \gt m) \;\
図1 離散時間制御系$$P(s) = \frac{1}{s+1}$$の1次系とする。*図1において、0次ホールドを使用して離散化した\(P(s)\)を求める。$$P(z) = (1 - z^{-1})\mathcal{Z} \left\{\frac{1}{s(s+1)} \right\} = (1 - z^{-1})\mathcal{Z} \left\{ \frac{1}{s} - \frac{1}{s+1} \right\} \\ =\frac{z-1}{z} \
離散時間システムのインパルス応答離散時間伝達関数が、$$G(z) = \frac{z + 0.3}{z^2 - 0.7z +0.1}$$のシステムのインパルス応答を求める。解法1:$$G(z) = \frac{Y(z)}{U(z)} = \frac{z + 0.3}{z^2 - 0.7z +0.1}$$なので、$$Y(z)(z^2 - 0.7z +0.1) = U(z)(z + 0.3) \\ Y(z) (1 - 0.7z^{-1} + 0.1 z^{-2} = U