メインカテゴリーを選択しなおす
※離散時間系に関しては、 4. 連続時間システムの離散化 を参照願います。7-1. 差分方程式からパルス伝達関数へ離散時間システムの差分方程式が式(1)で与えられている。このシステムのパルス伝達関数を求めよ。$$y(k+n) + a_1y(k+n-1) + \cdots + a_{n-1}y(k+1) +a_n y(k) \\ = b_0 u(k+m) + b_1 u(k+m-1) + \cdots + b_m u(k) \quad(n \gt m) \;\
3-1. オーバーシュートする要素の時間応答式(1)の伝達関数の単位ステップ応答を計算せよ。また、\(T_1 = 1,\;T_2=2,\;T_3=0.5,5,10\)としたときの、極と零点の位置、ボード線図と時間応答を示せ。$$G(s)=\frac{1+ T_3 s}{(1+T_1 s)(1+T_2 s)} \;\;\; \cdots (1)$$解答例:単位ステップ信号のラプラス変換は、\(U(s) = 1/s\)なので、単位ステップ応答は、$$Y(s) =
1-1 インパルス応答から伝達関数インパルス応答が、$$y(t) = 4e^{-2t} + 3e^{-5t}$$であるとき、システムの伝達関数を求めよ。解答例:インパルス応答が\(y(t) = 4e^{-2t} + 3e^{-5t}\)なので、このラプラス変換が伝達関数となる。$$G(s) = \mathcal{L}\{g(t)\} = 4\mathcal{L}\{e^{-2t}\} + 3\mathcal{L}\{e^{-5t}\} = \frac{4}{
伝達関数に基づく制御の動画まとめページの紹介です。 www.portal.control-theory.com 制御工学において,伝達関数に基づいた制御は古典制御として教えられており,重要な分野に位置づけられます。PID制御も伝達関数ベースの制御手法となります。リンク内には,140以上の動画があります。 以下のページでは,10本のYouTube動画があり,ラプラス変換やボード線図,ブロック線図などについて解説しています。PID制御のシミュレーション動画も含まれています。 www.portal.control-theory.com 以下のページでは,動画が7本あり,主にPID制御のゲイン設計につ…