メインカテゴリーを選択しなおす
今回から”電磁気学”を楽しむための記事を書いていこうと思います。ただ、教科書どおりの進行だと全く理解できません。 それで簡単に理解できるなら、ご自分で市販の「電磁気学」本を読むのが、一番手軽で自分のペースと興味があるところから始めることができていいのでは?となりますが、たぶん、どの本であっても、それを一度ぐらい読んだところで、ほとんど理解できないというのが、こ…
ベクトルの微分と積分は、ベクトル解析や物理学、工学において重要な数学的ツールである。これらは、スカラー場やベクトル場における変化の解析や物理現象の記述に広く使われる。ベクトルの微分ベクトルの微分は、スカラー関数の微分を拡張した概念で、ベクトルの各成分について微分を行う。ベクトル\(A\)がスカラー量である時間\(t\)の関数のとき、\(A\)の3成分\(A_x,A_y,A_z\)も\(t\)の関数であり、\(A_x(t)\)はスカラー量であるから、$$\fr
偏微分方程(Partial Differential Equation, PDE)は、複数の独立変数に依存する未知関数とその偏導関数を含む方程式である。これは、物理学、工学、生物学、経済学など、多くの分野で自然現象やシステムの挙動を記述するために広く用いられる。常微分方程式では独立変数が1個であるが、例えば、時間と空間の両方を独立変数とすると偏微分方程式での取り扱いとなる。また、時間変化がない静的な問題であっても、対象が点でなく、広がった物体や波動、さらに場を取り扱う場合に
スツルム・リューヴィルの境界値問題とフーリエ級数は、直交関数系による展開という点で密接に関連している。スツルム・リューヴィル型の微分方程式は式(1)の一般形で表される。$$\left(\frac{d}{dt}p(t) + q(t) + \lambda w(t)\right) x(t) =0 \;\;\; \cdots (1)$$この境界値問題で最も簡単な場合は、\(p(t)=1,\; q(t)=0,\;w(t)=1\)の場合である。また、境界点は、\(a=0,\;b=\pi
2階同次線形微分方程式の境界値問題を考える。初期値問題は、独立変数\(t\)のある1点における未知関数\(x(t)\)の値と導関数\(x'(t)\)の値を与えて、微分方程式の解を求める問題である。これに対して、境界値問題とは、微分方程式とそれに付随する境界条件を満たす解を求める問題のことで、相異なる2点における\(x(t)\)と\(x'(t)\)との関係を指定し、それを満たすような微分方程式の解を求める問題である。例えば、初期値問題は、振り子の初期の位置と速度を指定したとき
ルジャンドルの微分方程式ルジャンドルの微分方程式は、球対称性や直交性を持つ関数を特徴付ける重要な微分方程式で、その解であるルジャンドル関数は、数学と物理学の多くの分野で用いられる。ルジャンドルの微分方程式は、二階の線形常微分方程式で、次の形をしている。$$(1 - z^2) \frac{d^2x}{dz^2} - 2z\frac{dx}{dz} + \nu(\nu + 1) x = 0 \;\;\; \cdots (1)$$ここで、・\(x=x(z)\) は未知関数
オイラーのガンマ関数やベータ関数は、パラメータの関数である。つまり積分表示で定義されるが、積分変数とは関係のない変数の関数である。このような関数で有名なものがリーマンのゼータ関数$$\zeta(s)= \sum_{n=1}^\infty n^{-s}$$である。しかし、大部分の特殊関数は、微分方程式の解として定義される。超幾何微分方程式無限遠点を含めて、全ての特異点が確定特異点であるような微分方程式をフックス型微分方程式という。これは広義のべき展開で解が求め
係数関数の基本解系による表示式(1)の2階同次線形微分方程式の基本解系を\(\{x_1,\; x_2\}\)とする。$$x'' + p_1(t)x' + p_2(t) x = 0 \;\;\; \cdots (1)$$ 係数関数\(p_1(t),\;p_2(t)\)は、基本解系で書き表すことができる。仮定から、$$x_1 '' + p_1 x_1' + p_2 x_1 = 0 \\x_2'' + p_1 x_2' + p_2 x_2 = 0 \;\;\; \cdot
線形微分方程式とは、未知関数(通常 \(x(t)\) などで表される)とそのすべての導関数(1階、2階、またはそれ以上の階数)が線形結合された形を持つ微分方程式を指す。線形性の条件として、未知関数\(x\) およびその微分がすべて一次で現れること、つまりべきが 1 であることが必要である。線形微分方程式の一般的な形は、1階線形微分方程式では、$$\frac{dx}{dt} + p(t)x = q(t)$$と表せる。ここで、\(x(t)\)は未知関数、\(p(t),\;\;q
高階微分方程式とは、微分の次数が2以上の微分方程式を指す。たとえば、3階の微分方程式は$$y^{(3)} + p(x)y'' + q(x)y' + r(x)y = g(x)$$のような形式となる。ここで、\(y^{(3)}\)は3階微分、\(y''\)は2階微分、\(y'\)は1階微分を表す。このような方程式を解く方法は、その形状や種類に応じて異なる。高階微分方程式が解析的に解けるのは稀である。1階は階数を下げられる特別な場合を考える。並進不変性がある場合並
簡単な現象論的モデルは1階微分方程式になることが多い。1.放射性元素の崩壊放射性元素は一定の割合で崩壊するので、次の1階の微分方程式でモデル化される。$$\frac{dN}{dt} = -\lambda N \;\;\;\; (\lambda \gt 0 )$$ここで、\(N\)は時間\(t\) における放射性原子の数、\(\lambda\)は崩壊定数。この方程式は指数関数的減衰を示し、解は$$N(t) = N_0 e^{-\lambda t}$$である。なお、半減期(半減
常微分方程式(Ordinary Differential Equation:ODE)は、未知の関数とその導関数を含む方程式のことである。常微分方程式は、関数の変化を記述するために使われ、しばしば時間や空間など、1つの独立変数に対する関数の変化を扱う。物理学、工学などの多くの分野で、自然現象やシステムのモデリングに利用される。ニュートンの運動方程式ニュートンの運動方程式の1次元の場合を考える。質点\(M\)の質量を\(m\)、\(M\)の運動の加速度を\(a\
ガンマ関数ガンマ関数は、自然数に対して定義される階乗の概念を連続数に一般化した関数である。ガンマ関数は複素数の実部が正の領域において定義され、特に実数の範囲で広く利用される。ガンマ関数の定義ガンマ関数\( \Gamma(\nu)\) は、複素数\(\nu\) の実部が正のときに次の定積分で定義される。$$\Gamma(\nu) = \int_0^{\infty} x^{\nu-1} e^{-x} dx \;\;\; \cdots (1)$$この積分は \
正則な複素関数のテイラー展開初等関数\(1/(1+x)\)のテイラー展開は、$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n \;\;\; \cdots (1)$$である。複素関数の場合、\(f(z)\)を点\(z=a\)の近傍で正則な関数とすると、式(1)の\(x\)が複素数でも成立するので、$$\frac{1}{\zeta -z} = \frac{1}{\zeta -a} \cdot \frac{1}{1 - \f
解析関数とは、ある点の近傍で無限回微分可能であり、かつその点におけるテイラー展開がその近傍で収束するような関数のことを指す。複素変数\(z\)の関数\(w = f(z)\)が微分可能なとき、すなわち、$$\lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta z \to 0}\frac{f(z+\Delta z) -f(z)}{\Delta z} \;\;\; \cdots (1)$$が存在するとき、\(
ある区間で連続な関数は、その区間において\(C^0\)級であるという。同様に、ある区間で\(n\)回微分可能で\(n\)階導関数が連続な関数は、その区間で\(C^n\)級であるという。何回も微分可能ならば\(C^{\infty}\)級である。\(f(x)\)を点\(x=a\)を内部に含む微小な閉区間\(N(a)\)で\(C^{\infty}\)級の関数とする。$$\int_a^x f(\tau)d \tau= F(a) - F(a)$$(\(F(x)\)は\(f(x)\)の
積分の定義は、微分の逆演算と関数のグラフをヒストグラムの極限と見た時の面積という2つの面がある。※微小量、微分の記法などについては、 4. 微分(微積分学)を参照願います。微分の逆演算としての積分\(F(x)\)の導関数(\(F(x)\)を微分したもの)が\(f(x)\)に等しい時、前者を後者の原始関数(もしくは不定積分)といい、$$F(x) = \int f(x) dx$$と書く。定数の微分は\(0\)、また、定数でない関数の微分は\(0\)にならない。よ
微分法ニュートンは、瞬間における速度や加速度を定義するために微分の概念を導入した。時間の関数をグラフに描いたとき、その曲線への接線の勾配を微分係数という。ライプニッツは、独立変数の微小変化に対する関数の変化の比率を考えた。その極限を微分商という。両者は同じものとなるが、その用語は微分概念の2つの側面を表している。図1 微分係数初等関数のような普通に考える関数\(y=f(x)\)は、ほとんどの点で微分可能である。つまり、$$\lim_{\D
初等関数(elementary function)とは、数学において基本的でよく知られた関数の総称で、以下のような関数が初等関数として挙げられる。1.多項式関数(代数関数)(例:\( f(x) = x^2 + 3x + 2\))2.指数関数・対数関数(例: \(f(x) = e^{x},\;f(x) = \log(x)\))3.三角関数(例: \(f(x)=\sin(x), \; \cos(x),\; \tan(x)\))4.逆三角関数(例: \(f(x) = \ar