メインカテゴリーを選択しなおす
解析関数とは、ある点の近傍で無限回微分可能であり、かつその点におけるテイラー展開がその近傍で収束するような関数のことを指す。複素変数\(z\)の関数\(w = f(z)\)が微分可能なとき、すなわち、$$\lim_{\Delta z \to 0} \frac{\Delta w}{\Delta z} = \lim_{\Delta z \to 0}\frac{f(z+\Delta z) -f(z)}{\Delta z} \;\;\; \cdots (1)$$が存在するとき、\(