メインカテゴリーを選択しなおす
スツルム・リューヴィルの境界値問題とフーリエ級数は、直交関数系による展開という点で密接に関連している。スツルム・リューヴィル型の微分方程式は式(1)の一般形で表される。$$\left(\frac{d}{dt}p(t) + q(t) + \lambda w(t)\right) x(t) =0 \;\;\; \cdots (1)$$この境界値問題で最も簡単な場合は、\(p(t)=1,\; q(t)=0,\;w(t)=1\)の場合である。また、境界点は、\(a=0,\;b=\pi
2階同次線形微分方程式の境界値問題を考える。初期値問題は、独立変数\(t\)のある1点における未知関数\(x(t)\)の値と導関数\(x'(t)\)の値を与えて、微分方程式の解を求める問題である。これに対して、境界値問題とは、微分方程式とそれに付随する境界条件を満たす解を求める問題のことで、相異なる2点における\(x(t)\)と\(x'(t)\)との関係を指定し、それを満たすような微分方程式の解を求める問題である。例えば、初期値問題は、振り子の初期の位置と速度を指定したとき