メインカテゴリーを選択しなおす
係数関数の基本解系による表示式(1)の2階同次線形微分方程式の基本解系を\(\{x_1,\; x_2\}\)とする。$$x'' + p_1(t)x' + p_2(t) x = 0 \;\;\; \cdots (1)$$ 係数関数\(p_1(t),\;p_2(t)\)は、基本解系で書き表すことができる。仮定から、$$x_1 '' + p_1 x_1' + p_2 x_1 = 0 \\x_2'' + p_1 x_2' + p_2 x_2 = 0 \;\;\; \cdot
線形微分方程式とは、未知関数(通常 \(x(t)\) などで表される)とそのすべての導関数(1階、2階、またはそれ以上の階数)が線形結合された形を持つ微分方程式を指す。線形性の条件として、未知関数\(x\) およびその微分がすべて一次で現れること、つまりべきが 1 であることが必要である。線形微分方程式の一般的な形は、1階線形微分方程式では、$$\frac{dx}{dt} + p(t)x = q(t)$$と表せる。ここで、\(x(t)\)は未知関数、\(p(t),\;\;q