メインカテゴリーを選択しなおす
※定常特性に関しては、27. 定常特性と内部モデル原理 を参照願います。5-1. 定常位置偏差の計算フィードバック制御系の開ループ伝達関数\(L(s)\)が式(1)で与えられているとき、目標値が大きさ\(5\)でステップ状に変化したときの定常位置偏差\(e(\infty)\)を求めよ。$$L(s) = \frac{40(s+5)}{s^3 + 7s^2 + 18s +24} \;\;\; \cdots (1)$$図1 フィードバック制御系
3-1. オーバーシュートする要素の時間応答式(1)の伝達関数の単位ステップ応答を計算せよ。また、\(T_1 = 1,\;T_2=2,\;T_3=0.5,5,10\)としたときの、極と零点の位置、ボード線図と時間応答を示せ。$$G(s)=\frac{1+ T_3 s}{(1+T_1 s)(1+T_2 s)} \;\;\; \cdots (1)$$解答例:単位ステップ信号のラプラス変換は、\(U(s) = 1/s\)なので、単位ステップ応答は、$$Y(s) =
2-1 1次遅れ要素のベクトル軌跡次の式で示す1次遅れ要素のベクトル軌跡を作成せよ。$$G(s) = \frac{3}{1 + 4s}$$解答例:1次遅れ要素のゲインと位相を求める。\(s \to j\omega\)により、$$G(j \omega) = \frac{3}{1 + j 4 \omega}$$と周波数伝達関数となる。従って、ゲインは$$ G(j \omega) = \frac{3}{\sqrt{1 + (4 \omega)^2}}$$また、位
1-1 インパルス応答から伝達関数インパルス応答が、$$y(t) = 4e^{-2t} + 3e^{-5t}$$であるとき、システムの伝達関数を求めよ。解答例:インパルス応答が\(y(t) = 4e^{-2t} + 3e^{-5t}\)なので、このラプラス変換が伝達関数となる。$$G(s) = \mathcal{L}\{g(t)\} = 4\mathcal{L}\{e^{-2t}\} + 3\mathcal{L}\{e^{-5t}\} = \frac{4}{
伝達関数の表現と演算状態方程式と出力方程式を式(1)とする。$$\dot{x} = Ax + Bu,\quad y=Cx + Du \;\;\; \cdots (1)$$このとき、システムの伝達関数は、式(2)の各種形式で表せる。$$G(s) = C(sI-A)^{-1} B + D , \quad G(s) = (A,B,C,D) , \quad G(s) = \left[\begin{array}{c c} A & B \\ \hline C &
伝達関数に基づく制御の動画まとめページの紹介です。 www.portal.control-theory.com 制御工学において,伝達関数に基づいた制御は古典制御として教えられており,重要な分野に位置づけられます。PID制御も伝達関数ベースの制御手法となります。リンク内には,140以上の動画があります。 以下のページでは,10本のYouTube動画があり,ラプラス変換やボード線図,ブロック線図などについて解説しています。PID制御のシミュレーション動画も含まれています。 www.portal.control-theory.com 以下のページでは,動画が7本あり,主にPID制御のゲイン設計につ…