メインカテゴリーを選択しなおす
サーボ型一般化最小分散制御(GMVC)は、制御対象の出力が目標値に追従するように、出力の分散を最小化する制御方式である。従来の最小分散制御(MVC)に比べて、「目標追従性」が明示的に設計目的に組み込まれている。サーボ型GMVCは本質的にはモデルベースの制御方式で、以下の特徴からある程度のロバスト性を持つ。・出力フィードバック構造:モデル不確かさがある程度許容される。・目標追従と外乱抑制のバランス:外乱やモデル誤差が存在しても、リファレンス追従性を確保できるよう設計されている
閉ループ制御系で外部入力として目標値、外乱があり、それらの変化によって定常偏差が生じるときは、内部モデル原理に基づいて制御系の構造を見直す必要がある。外部入力がステップ状に変化する場合には、そのモデルとして\(\frac{1}{1-q^{-1}}\)(積分器)を前置補償器として設ける。図1に制御対象の前に補償器\(\frac{1}{\Delta}\)を設置した構成を示す。\(\Delta = 1-q^{-1}\)である。前置補償器と制御対象を併せた見かけ上の制御
最小分散制御を適用するには、制御対象は最小位相系で、むだ時間が正確にわかっている必要がある。この条件を緩和するために一般化最小分散制御が提案された。式(1)の線形離散時間モデルの制御対象を考える。$$A(q^{-1})y_k = q^{-j_m} B(q^{-1})u_k + C(q^{-1})e_k \;\;\; \cdots (1)$$ここで、$$A(q^{-1}) = 1 + a_1 q^{-1} + a_2 q^{-2} + \cdots a_n q^{-n} \\
※最小分散制御(1)の内容を再整理する。数式表現が異なるが、こちらの方が分かりやすいと思う。式(1)の線形離散時間モデルで記述されるシステムを考える。$$A(q^{-1})y_k = q^{-j}B(q^{-1})u_k + C(q^{-1})e_k \;\;\; \cdots (1)$$ここで、\(y_k\)は出力信号、\(u_k\)は入力信号、\(e_k\)は平均値ゼロの白色雑音、\(q^{-1}\)はシフトオペレータ、である。\(A(q^{-1}),\; B(
最小分散制御(Minimum Variance Control, MVC)は、システムの出力の分散を最小化することを目的とした制御手法である。これは、特にランダムな外乱やノイズの影響を受けるシステムに対して、できるだけ安定した出力を得るために用いられる。手法として、むだ時間分先の出力を予測し、その予測値に基づいて現時刻の操作量を決定する。この制御により、むだ時間を有するシステムに対して追従特性に優れた制御系を設計できるが、対象とするシステムにいくつかの厳しい前提条件を必要と