メインカテゴリーを選択しなおす
閉ループ制御系で外部入力として目標値、外乱があり、それらの変化によって定常偏差が生じるときは、内部モデル原理に基づいて制御系の構造を見直す必要がある。外部入力がステップ状に変化する場合には、そのモデルとして\(\frac{1}{1-q^{-1}}\)(積分器)を前置補償器として設ける。図1に制御対象の前に補償器\(\frac{1}{\Delta}\)を設置した構成を示す。\(\Delta = 1-q^{-1}\)である。前置補償器と制御対象を併せた見かけ上の制御
最小分散制御を適用するには、制御対象は最小位相系で、むだ時間が正確にわかっている必要がある。この条件を緩和するために一般化最小分散制御が提案された。式(1)の線形離散時間モデルの制御対象を考える。$$A(q^{-1})y_k = q^{-j_m} B(q^{-1})u_k + C(q^{-1})e_k \;\;\; \cdots (1)$$ここで、$$A(q^{-1}) = 1 + a_1 q^{-1} + a_2 q^{-2} + \cdots a_n q^{-n} \\
図1 離散時間制御系$$P(s) = \frac{1}{s+1}$$の1次系とする。*図1において、0次ホールドを使用して離散化した\(P(s)\)を求める。$$P(z) = (1 - z^{-1})\mathcal{Z} \left\{\frac{1}{s(s+1)} \right\} = (1 - z^{-1})\mathcal{Z} \left\{ \frac{1}{s} - \frac{1}{s+1} \right\} \\ =\frac{z-1}{z} \