メインカテゴリーを選択しなおす
2次形式表現を用いることで、最小二乗法をより簡潔に表現し、計算を効率化することができる。2次形式を利用した最小二乗法は、機械学習や統計モデル、時系列分析、信号処理など幅広い分野で応用されている。ここでは、その表現形式とScilabによる実装を紹介する。最小二乗法は、観測データに対して最適なモデルをフィットさせるための方法で、誤差の二乗和を最小化することでパラメータを推定する。特に、線形回帰のような問題で広く使われる。基本的な最小二乗法は、次の形で表される線形モデルを考える。
回帰分析回帰分析は、ある変数(目的変数)の変動を、他の変数(説明変数)との関係を通じて説明・予測するための統計手法である。計測工学では、センサデータの解析や測定精度の向上、システムの最適化を目的として回帰分析が活用される。具体的には、以下がある。・センサデータの補正と校正センサによる測定データには誤差やノイズが含まれることが多いため、回帰分析を用いることでデータの補正や校正が可能になる。例えば、「温度センサの出力と実際の温度の関係を回帰分析し、測定誤差を補正する。」
統計的な1つのデータの集団を母集団というが、調査対象とする2つ以上の母集団の間に互いに差があるか、どの程度の差があるかを検討するのに分散分析法を使う。要因と水準要因:出力変数または応答変数(実験結果)の大きさを評価するための入力(変動)する変数で、因子ともいう。温度、圧力、電流などが因子となる。水準:因子の影響をみるため、その大きさを何段階かに変えるときの段階のこと。例えば、温度が因子\(C\)とすると、\(C_1 = 30 \)[℃]、\(C_2=50\)
最小二乗法は、測定値群を多項式などの尤もらしい関数曲線で表す手段であるが、必ずしも測定点を通るものではない。とびとびの実験データを得た時は、それらの中間点を推定したり、点列を繋いでなめらかな曲線を描いたりする必要もある。これらの手法をデータ補間、曲線近似という。ラグランジュの補間法ラグランジュ補間法は、与えられたデータ点を通る1つの多項式を求める方法 である。これは、ニュートン補間法と並ぶ代表的な補間手法の1つであり、特に数値解析や信号処理の分野で用いられる