メインカテゴリーを選択しなおす
可制御、可観測の双対性可制御性と可観測性の双対性とは、これらの2つの性質が密接な関係を持っていることを意味し、システムの可制御性に関する問題を、対応する「双対」システムにおける可観測性の問題に置き換えて考えることができるということを意味する。双対システムは、次のように定義される。・元のシステムの行列\(A\)に対して、双対システムのシステム行列は\(A^{T}\)。・元のシステムの入力行列\(b\)に対して、双対システムの入力行列は\(c^{T}\)。・元のシステム
離散時間システムの可制御、可観測条件連続時間システムの状態方程式が、$$\frac{dx}{dt} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\1 \end{bmatrix} u \\ y = \begin{bmatrix} 1 & 0 \end{bmatrix} x$$のとき、これを離散時間システムにしたとき、可制御、可観測となるための条件を
※可観測性の解説は、11. 可観測性 、9. 対角正準形 を参照願います。システムを$$\dot{x}(t) = A x(t) + b u(t) \\ y(t) = cx(t) \;\; \cdots \cdots (1) $$で表す1入力1出力の\(n\)次元システムとする。可観測性の条件可観測性は以下のように表すことができる。(1)式(1)を対角正準形で表現したとき、すべての\(\tilde{c}_i\)がゼロでないとき、システムは可観測である。(2)あ