メインカテゴリーを選択しなおす
#数学
INポイントが発生します。あなたのブログに「#数学」ハッシュタグのバナーを掲載しませんか ハッシュタグのバナーやリンクをINポイントランキングの対象にしたいメンバーの方は、ログインしてからリンクタグを取得してください ・バナーを変更したい場合は、必ず画像に「ハッシュタグ」または「タグ」の文字かバナーロゴを重ねてください
タグをコピーしました
リサジュー図形とは?
自分が数学を再認識するためのブログです。解説等をしているので学習の補助にご活用ください。
2025/01/06 18:20
数学
フォローできる上限に達しました。
新規登録/ログインすることでフォロー上限を増やすことができます。
フォローしました
リーダーで読む
小学生でも解ける高校入試数学の問題(慶應義塾女子高等学校2022年数学第3問)
1から1000までの整数が円形に並んでいる。次のルールで整数に印をつけていく。 1.最初に1に印をつける。 2.印をつけた整数の次の整数から数えて12番目の整数に印をつけていく、すなわち1、13、
2025/01/04 23:04
数検申込み完了!
くぅちゃん絶賛期末試験中です。試験が終わるとほぼ冬休みです羨ましい先日、くぅちゃんが学校から数検申込みの用紙を貰ってきました。中学までは全員が学年相当級を学校…
2025/01/04 02:04
2025という数字にキャピるきなこさん
このブログはプロモーションを含みますそろそろこの季節ですねYakult ヤクルトY1000 110ml×10本【冷蔵クール便】ヤクルトAmazon あけました、2025年。とりあえず真っ先にやることは きなこさんを旅券事務所に パスポートを 受け取りに連れて行くことです笑 年末は 旦那さんがインフルエンザを もらってきやがりまして 大変面倒くさかったです家庭内感染はありませんでしたヤレヤレ さて、 中学入試の算数にもよくだされるその年の年号問題 きなこさんがいうには今年の問題作成者は めっちゃ面白そう とのこと。 なぜならば、 2025という数字は 45×45=2025 2025は45番目の平…
2025/01/01 08:41
小学生でも解ける高校入試数学の問題(西大和学園高等学校2018年数学第1問(5))
10%の食塩水200gを入れた容器がある。この容器からxgの食塩水をくみ出した後、xgの水を入れてよくかき混ぜた。さらに、xgの食塩水をくみ出した後、xgの水をいれてよくかき混ぜたところ、濃度が3.6
2024/12/28 15:14
互いに素でない2数に関する命題の真偽は?
互いに素でない2つの整数に関する命題の真偽を調べる問題とその解説です。
2024/12/27 10:44
東大受験に宅浪で挑む!独学者のまとめノート公開
東大受験に宅浪で挑む!独学者のまとめノートを公開しています。
2024/12/26 20:10
フェルマーの小定理
フェルマーの小定理とは、素数pとpと互いに素な整数aについてa^(p-1)≡1 (mod p)が成り立つという定理のことです。
2024/12/22 16:45
ウィルソンの定理
ウィルソンの定理とは、素数pについて(p-1)!≡-1 (mod p)が成り立つという定理のことです。
小学生でも解ける大学入試数学の問題(京都大学2017年文系数学第5問)
nを2以上の自然数とする。さいころをn回振り、出た目の最大値Mと最小値Lの差M-LをXとする。 (1)X=1である確率を求めよ。 (2)X=5である確率を求めよ。 (注) 自然数→1以上の整数(2以上
2024/12/22 12:46
小学生でも解ける高校入試数学の問題(大阪星光学院高等学校2024年数学第5問)
右の図のような1辺の長さが4の立方体ABCD-EFGHについて、 (1)4点A、C、F、Hを結んでできる立体の体積は[ ]である。 (2)4点A、C、F、Hを結んでできる立体と4点B、D、E、Gを結んで
2024/12/20 12:20
【2024】神戸大学入試問題数学理系大問1をとことんわかりやすく動画を使わずに解説します
参考書や予備校のサイトを利用して大学入試問題を勉強している人の中で「解説を読んでも理解できない」と思ったことはありませんか?YouTubeなどに解説動画がありますが「通信環境がない」とか「動画を見るのはめんどう」思う人も多いでしょう。この記...
2024/12/19 11:28
ある素数未満の自然数の倍数をある素数で割ったときの余りの性質
素数pとp未満の自然数kについてkx≡1 (mod p)を満たすp未満の自然数xが存在するという性質があることを確かめてみます。 また、ab≡1 (mod p)を満たすp未満の自然数a,bの組み合わせについて考えてみます。
2024/12/19 09:13
倍数を互いに素な自然数で割った余りの性質
互いに素な自然数A,Bについて連続するAの倍数B個をそれぞれBで割ったときの余りを一列に並べたものは整数0, 1, ..., B-2, B-1の並べ替えとなります。
2024/12/16 18:10
関数のグラフを伸び縮みさせる
by=f(ax)(a,b:正実数)のグラフは関数y=f(x)のグラフをx軸方向に1/a倍、y軸方向に1/b倍に伸ばしたものとなります。
2024/12/12 16:47
【三平方の定理】を現場で活用する方法:距離・法長・直角設定
三平方の定理(ピタゴラスの定理)は、直角三角形の斜辺の長さを「a」、他の2辺の長さをそれぞれ「x」と「y」とした場合、直角を挟む2辺の長さの二乗の和は、斜辺の長さの二乗に等しいという法則です。
2024/12/11 17:35
富士山の頂上から見渡せる範囲を計算してみよう【三平方の定理】
富士山の頂上から見える景色は壮大で、晴れた日には数百キロメートル先の景色を望むことができます。では、富士山の頂上からどれだけ遠くまで見ることができるのでしょうか?この疑問に答えるためには、地球の半径と富士山の高さを考慮に入れた計算が必要となります。
2024/12/11 17:33
20241210 PIAAC(スキル国際比較)結果
https://www.waxmann.com/?eID=texte&pdf=4965Ueberblick.pdf&typ=zusatztext www.oecd.org PIAAC(国際成人能力評価プログラム):OECDが16歳から65歳の成人を対象に実施している成人スキル調査(10年周期)。成人にとって職業上重要なスキル(読み書き能力~上図左、計算能力~同中央、問題解決能力~右)の熟達度を測定する。 ドイツは数学で11位、読解力で12位、問題解決は9位と、OECDの平均をやや上回る水準。ちなみに3種目とも1位がフィンランド、2位が日本、3位がスウェーデン、4位がノルウェー、5位がオランダと…
2024/12/11 05:41
微分係数の定義式を利用して証明する問題
微分係数の定義式を利用して、定義式とは異なる形の微分係数が求められる式であることを証明する問題です。
2024/12/07 19:05
小学生でも解ける大学入試数学の問題(一橋大学2014年後期数学第3問)
(2×3×5×7×11×13)^10の10進法での桁数を求めよ。 (注) (2×3×5×7×11×13)^10→(2×3×5×7×11×13)を10回かけあわせた数 10進法での桁数→小学生の場合、単に、桁数と考えればいい
2024/12/02 12:19
点の平行移動・対称移動
点が平行移動・対称移動した後の座標がどの様になるのかについて解説してみました。
2024/12/02 10:41
小学生でも解ける大学入試数学の問題(九州大学2000年後期理系数学第4問(2))
20円以上の任意の値段分の切手は5円切手と6円切手の組合せとして買えることを示せ。 にほんブログ村 有名問題(フロベニウスの硬貨交換問題(シルベスターの切手問題))で、昔から数学オリンピックや大
2024/11/30 12:09
フランスの「算数障害」と言語聴覚士
フランスでも、基本的には仕事内容は同じですが、「算数障害」も専門とする言語聴覚士がいます。実は、フランスでは、算数障害の子供や大人
2024/11/29 06:19
1次関数y=ax+bはy=axをy軸方向への平行移動したものでしかない?
1次関数y=ax+bのbはy=axをy軸方向へ平行移動した結果であることしか表さないのでしょうか?
2024/11/24 13:59
通る2点の座標がわかっている直線の方程式
2点$(p_1,p_2),(q_1,q_2)$を通る直線$l$の方程式は \[\large y=\frac{q_2-p_2}{q_1-p_1}(x-p_1)+p_2\] と表すことができます。 なぜこ...
2024/11/18 17:57
通る点の座標と傾きがわかっている直線の方程式
点$(p,q)$を通る傾きが$m$の直線$l$の方程式は \[\large y=m(x-p)+q\] と表すことができます。 なぜこの式で表すことができるのでしょうか?
1次関数(グラフの形、傾き、y切片)
1次関数 とは、 \[y=ax+b\qquad(a,b:実数,a\neq0)\] という$y$が変数$x$についての次数が$1$の多項式によって表される関数のことです。 $a$は 傾き 、$b$は y切片 といいます。$a...
2024/11/18 17:56
ノート / (数1) 三角関数
ちゃんと勉強しなかった俺 meyon の、三角関数に関するノートです。記事の内容に数学的な厳密さはありませんので、ご容赦を。この記事は随時加筆更新します。(最終更新日時 ) 三角関数の定義 半径 r の円において、 三角関数の定義 円の方程
2024/11/18 14:05
20点からの脱却なるか?数学の定期テストの結果
前回の数学が20点だった娘。 『数学で20点を取ってきた娘・・・中学1年生 2回目の定期テスト』 中1の娘の定期テストが終わり、返ってきた数学の点数が20点…
2024/11/15 10:30
数の性質(13で割った余りの周期性)の問題(一橋大学2024年後期数学第5問・選択問題[1])
数列{an}はa1=1、a2=1、an+2=an+1+an(n≧1)を満たしている。a2024を13で割った余りを求めよ。 (注) 数列{an}→小学生は無視して考えればよいでしょう。 an→n番目の数(他も同様) にほんブログ
2024/11/14 12:29
約分・通分とは?
約分 約分 とは、分数の分母と分子を同じ数で割って より簡単な分数に直すこと です。 より簡単な分数とは、より小さい自然数をもちいて表される分数のことです。
2024/11/08 19:29
3か月でマスターする~シリーズ世界史・数学・ピアノ
NHKで始まった「3か月でマスターする」シリーズ 頭の体操のつもりで録画して勉強を始めました(^^♪ ...
2024/11/06 22:53
【2024】神戸大学入試問題数学文系大問3をとことんわかりやすく動画を使わずに解説します
参考書や予備校のサイトを利用して大学入試問題を勉強している人の中で「解説を読んでも理解できない」と思ったことはありませんか?YouTubeなどに解説動画がありますが「通信環境がない」とか「動画を見るのはめんどう」思う人も多いでしょう。この記事では読むだけで動画よりもわかりやすくどの参考書よりも細かく解説をしていきます。
2024/11/05 11:52
双曲線軌道と放物線軌道の物体の軌道上の速度について(2)
双曲線軌道と放物線軌道の物体の軌道上の速度についてで求めた面積速度√(GMa(ε^2-1))/2を使って、双曲線軌道を描いている物体の位置から時間を求める関数を求めておきたいと思います。双曲線軌道を描いている物体の動径が描く面積Rは、下の図でいえばR+R'-R'ですから、t=(R+R'-R')/(√(GMa(ε^2-1))/2)となりますので、まずはR'を求めたいと思います。双曲線の方程式は(x/a)^2-(y/b)^2=1ですから、y=±b√((x/a)^2-1)ですが、y>=0の...
2024/10/30 11:58
小学生でも解ける高校入試数学の問題(西大和学園高等学校2024年数学第1問(5))
3つの数a、b、cが次の3つの式を同時に満たすとき、18aの値を求めよ。 2021a+2022b+2023c=1/2024 2022a+2023b+2021c=1011/1012 2023a+2021b
2024/10/29 22:29
【2024】神戸大学入試問題数学文系大問2をとことんわかりやすく動画を使わずに解説します
2024/10/29 12:41
【2024】神戸大学入試問題数学文系大問1をとことんわかりやすく動画を使わずに解説します
2024/10/29 12:27
符号を考慮した長さとは?
符号を考慮した長さとは、測る際の基準の点と方向がある長さのことです。基準となる方向と同じ方向に測ったときは正の値をとり、逆の方向に測ったときは負の値をとります。
2024/10/27 13:15
小学生でも解ける大学入試数学の問題(奈良県立医科大学2021年前期数学第4問)
以下の空欄を適切に埋めて文章を完成させよ。 1、2、3、4、8、9の6つの数字を、それぞれ1個ずつ横に並べて6桁の整数を作る。このとき、作ることのできる6桁の整数は[ア]通りであり、その総和は[イ]×1
2024/10/25 22:30
小学生でも解ける高校入試数学の問題(大阪星光学院高等学校2024年数学第4問)
2つの2桁の正の整数XとYがある。Xの十の位の数と一の位の数を入れかえたものがYである。ただし、X>Yとする。 (1)X+Y=77のとき、Xの値をすべて求めると[ ]である。 (2)X^2-Y^2=
2024/10/23 23:01
座標空間内の2点間の距離
座標空間内の2点$A(x_a,y_a,z_a),B(x_b,y_b,z_b)$間の距離$AB$は \[\large AB=\sqrt{(x_b-x_a)^2+(y_b-y_a)^2+(z_b-z_a)^2}\] と表すことができます。 ...
2024/10/23 17:58
重力が強い場所では光の速度は遅くなるのか?
Yahoo!知恵袋[q10305611890]で質問を行ったところ、EMANの物理学の光速度の変化という記事がある事が分かり、この中で「一般相対論においては光速は実は変化するのだ」と主張していたのですが、高校をお情けで卒業した分際でこの主張に対して異議を唱えて見たいと思います。どういう事かというと、こちらの記事の中でシュバルツシルト計量に基づいて光の動径方向の速度を±(1-a/r)c,円周方向の速度を±√(1-a/r)cと計算していましたが...
2024/10/21 13:06
座標平面上の2点間の距離
座標平面上の2点$A(x_a,y_a),B(x_b,y_b)$間の距離$AB$は \[\large AB=\sqrt{(x_b-x_a)^2+(y_b-y_a)^2}\] と表すことができます。 なぜこのように表すことができるのかを考...
2024/10/20 11:16
証明問題が苦手な人への対策:公立高校入試で確実に得点するために
みなさんからの応援がブログ執筆をする上で、大変な励みになります。ぜひ、上のリンクをクリックして応援してください。公立高校入試の数学で多くの生徒がつまずくポイントの一つが「証明問題」です。特に、証明問題が出題されるとどう手をつけてよいかわからないという声が多く聞かれます。このブログでは、証明問題が苦手な生徒に向けて、その原因と対策を分かりやすく説明していきます。証明問題ができない生徒には主に2つのパターンがあることが分かってい
2024/10/20 10:37
小学生でも解ける大学入試数学の問題(東京工業大学2004年後期数学第1問)
場所1から場所nに異なるn個のものが並んでいる。これらを並べ替えてどれもが元の位置にならないようにする方法の総数をD(n)とする。ただしn≧2とする。 (1)n=4の場合の並べ替え方をすべて書き出して、
2024/10/19 22:29
DS検定リテラシーレベルの公式テキストを読んでみた!データを扱うために必要な基礎知識が盛り込まれてます!
さてデータサイエンティスト (DS) 検定リテラシーレベルの公式テキストを読み始めています。 この公式テキストですが中々にボリュームが多く、読み切るのに時間がかかりました…。 しかし内容はリテラシーレベルということで、そんなに難
2024/10/19 21:35
数学英語
数学英語英語でも普通に1+1=2とか数式書いていいのですが、どう読むの?ってなると迷う人も多いのでは?ここでは簡単な数学英語について取り上げます。 目次…
2024/10/19 14:28
数直線上の2点間の距離
2点間の距離 とは、2点がどれだけ離れているかを表す$0$以上の値のことで、2点を結ぶ線分の長さのことです。 数直線上に座標が$a,b$である点$A,B$をとると、2点$A,B$間の距離$AB$は \[\large AB= b-a \ (= a...
2024/10/19 11:18
散々だった子供のテスト
中間テストがぞくぞくと返ってきた娘。 数学が返される前から「もしかしたら、0点かも!?」とか 「4点とか8点かも」と言っていた あまりに自信がなさげや…
2024/10/15 22:02
相対速度が高い慣性系は時間が遅れて見えるのか?
Yahoo!知恵袋(物理)を見ていて、特殊相対性理論について誤解していると思われる人がいると思いましたので、老爺心を全開にして、相対速度が高い慣性系は本当に時間が遅れて見えるのかという事について説明を行わせていただきます。まず私の結論を明らかにしますが、相対速度が高い慣性系は時間が遅れて見えると言った場合、現象論的には誤りになりますが、本質論的には正しいと言えるでしょう。*1どういう事かというと、光のドップ...
2024/10/15 16:09
次のページへ
ブログ村 151件~200件