ここでは、式(1)の状態方程式で示す線形時不変のシステムを制御対象とする。$$\dot{x} = Ax + Bu \;\;\; \cdots (1)$$ここで、\(x \in R^n , \quad u \in R^m\)である。また、\(B\)行列の\(m\)個の列ベクトルは、\(b_i \quad (i=1,2, \cdots, m)\)とする。可変構造系の基本用語の定義1.可変構造制御系の構造は、ベクトル関数の切換関数\(\sigma(x)\)の符号に
このサイトは、これまで携わってきた講義や研修で使用してきた資料を基に加筆修正し作成しています。工学基礎の勉強に活用して頂けると幸いです。初学者にも馴染めるようになるべく平易に解説しているつもりです。
※最小分散制御(1)の内容を再整理する。数式表現が異なるが、こちらの方が分かりやすいと思う。式(1)の線形離散時間モデルで記述されるシステムを考える。$$A(q^{-1})y_k = q^{-j}B(q^{-1})u_k + C(q^{-1})e_k \;\;\; \cdots (1)$$ここで、\(y_k\)は出力信号、\(u_k\)は入力信号、\(e_k\)は平均値ゼロの白色雑音、\(q^{-1}\)はシフトオペレータ、である。\(A(q^{-1}),\; B(
最小分散制御(Minimum Variance Control, MVC)は、システムの出力の分散を最小化することを目的とした制御手法である。これは、特にランダムな外乱やノイズの影響を受けるシステムに対して、できるだけ安定した出力を得るために用いられる。手法として、むだ時間分先の出力を予測し、その予測値に基づいて現時刻の操作量を決定する。この制御により、むだ時間を有するシステムに対して追従特性に優れた制御系を設計できるが、対象とするシステムにいくつかの厳しい前提条件を必要と
対象とするシステムのパラメータが未知であるとき、入出力データに基づいてパラメータを同定する。これをシステム同定という。同定法の基本である最小二乗同定は、システムの入力と出力の観測データから、システムのパラメータを推定する手法である。特に、線形離散時間モデルでは、時系列データに基づいてシステムのダイナミクスを推定する際に広く用いられる。線形離散時間モデルは式(1)で記述される。$$A(q^{-1})y_k = q^{-j}B(q^{-1})u_k + C(q^{-1})e_k
PCを個人で手に入れたのが1979年(シャープ:MZ-80K)だった。大学の研究室では、AppleⅡ、ソード、PC-8001などが徐々に使えるようになっていった。実験では、主にボードコンピュータ(TK-80)にA/Dなどを外部拡張して使っていた。その後、会社でIBM-PCやラップトップPCなどにより、計算、文書作成をしていた。当時のPCは非力だったので、シミュレーションなどの複雑な計算では、スパコンを使っていた。その後、インターネットが普及し、PCが計算や文書作成だけでなく
ARMAモデルは、時系列データを扱うときによく使われるモデルで、データの自己相関やランダムなノイズを考慮して、将来の値を予測するのに役立つ。ARMAモデルは、以下の2つの要素を組み合わせたモデルである。・AR(Auto-Regressive, 自己回帰)モデル・MA(Moving Average, 移動平均)モデルこれらを組み合わせることで、時系列データの現在の値が過去の値とノイズの影響を受けるという現象を表現できる。式(1)で表せる。$$x(t) = c + \sum_{
※離散時間システムの応答に関しては、5. 離散時間システムの応答、9. 離散時間システムの構造を参照願います。8-1. 固有値が正または零の実数固有値\(\lambda_i\)が正または零の実数のとき、\(\lambda_i^k x_i(0)\)の振る舞いを図示せよ。ただし、\(x_i(0) = 8\)とする。解答例: 固有値\(\lambda_i\)が正の実数なので、固有値の大きさが1よりも大きい場合は、\(\lambda_i^k\)は発散する。1
※離散時間系に関しては、 4. 連続時間システムの離散化 を参照願います。7-1. 差分方程式からパルス伝達関数へ離散時間システムの差分方程式が式(1)で与えられている。このシステムのパルス伝達関数を求めよ。$$y(k+n) + a_1y(k+n-1) + \cdots + a_{n-1}y(k+1) +a_n y(k) \\ = b_0 u(k+m) + b_1 u(k+m-1) + \cdots + b_m u(k) \quad(n \gt m) \;\
ロートルが生成AIを使ったプログラミングを経験している話。なお、私の使い方が正しいのか分からないので、正しいエンジニアを目指す人は、正しい学習に励んでください。ChatGPT(無料版)やGemini(当然、無料版)、Google Colabを適当に使ってプログラミングをしている。成果はこちらへ。スクリプトの作成手順としては、まずChatGPTに問題を与えて、プログラミング言語を指定する。これだけでスクリプトを作成してくれる。プログラミング言語は、分野が制御工学系なので主にS
※\(\mathcal{Z}\)変換に関することは 2. Z変換法 を参照願います。6-1. 指数関数の\(\mathcal{Z}\)変換指数関数\(x(t) = e^{\alpha t},\; t \ge 0\) を周期\(T\)でサンプルして得た信号値系列を\(\mathcal{Z}\)変換せよ。解答例: 周期\(T\)でサンプルして得た信号値系列は、\(e^0,\;e^{\alpha T},\; e^{2\alpha T},\; e^{3\al
※定常特性に関しては、27. 定常特性と内部モデル原理 を参照願います。5-1. 定常位置偏差の計算フィードバック制御系の開ループ伝達関数\(L(s)\)が式(1)で与えられているとき、目標値が大きさ\(5\)でステップ状に変化したときの定常位置偏差\(e(\infty)\)を求めよ。$$L(s) = \frac{40(s+5)}{s^3 + 7s^2 + 18s +24} \;\;\; \cdots (1)$$図1 フィードバック制御系
4-1. 安定なシステム特性方程式が式(1)のとき、このシステムの安定判別を行え。$$s^5 +8s^4 + 25s^3 + 40s^2 + 34 s + 12=0 \;\;\; \cdots (1)$$解答例: 式(1)は、安定であるための必要条件が成り立っている。つまり特性方程式の係数が全て「正」である。次に、ラウス表を作成する。※ラウス表の作成方法に関しては、17. 安定判別 を参照願います。\(s^5\)行12534\(s^4\)行84012
3-1. オーバーシュートする要素の時間応答式(1)の伝達関数の単位ステップ応答を計算せよ。また、\(T_1 = 1,\;T_2=2,\;T_3=0.5,5,10\)としたときの、極と零点の位置、ボード線図と時間応答を示せ。$$G(s)=\frac{1+ T_3 s}{(1+T_1 s)(1+T_2 s)} \;\;\; \cdots (1)$$解答例:単位ステップ信号のラプラス変換は、\(U(s) = 1/s\)なので、単位ステップ応答は、$$Y(s) =
2-1 1次遅れ要素のベクトル軌跡次の式で示す1次遅れ要素のベクトル軌跡を作成せよ。$$G(s) = \frac{3}{1 + 4s}$$解答例:1次遅れ要素のゲインと位相を求める。\(s \to j\omega\)により、$$G(j \omega) = \frac{3}{1 + j 4 \omega}$$と周波数伝達関数となる。従って、ゲインは$$ G(j \omega) = \frac{3}{\sqrt{1 + (4 \omega)^2}}$$また、位
1-1 インパルス応答から伝達関数インパルス応答が、$$y(t) = 4e^{-2t} + 3e^{-5t}$$であるとき、システムの伝達関数を求めよ。解答例:インパルス応答が\(y(t) = 4e^{-2t} + 3e^{-5t}\)なので、このラプラス変換が伝達関数となる。$$G(s) = \mathcal{L}\{g(t)\} = 4\mathcal{L}\{e^{-2t}\} + 3\mathcal{L}\{e^{-5t}\} = \frac{4}{
「ブログリーダー」を活用して、tctyamさんをフォローしませんか?
指定した記事をブログ村の中で非表示にしたり、削除したりできます。非表示の場合は、再度表示に戻せます。
画像が取得されていないときは、ブログ側にOGP(メタタグ)の設置が必要になる場合があります。
ここでは、式(1)の状態方程式で示す線形時不変のシステムを制御対象とする。$$\dot{x} = Ax + Bu \;\;\; \cdots (1)$$ここで、\(x \in R^n , \quad u \in R^m\)である。また、\(B\)行列の\(m\)個の列ベクトルは、\(b_i \quad (i=1,2, \cdots, m)\)とする。可変構造系の基本用語の定義1.可変構造制御系の構造は、ベクトル関数の切換関数\(\sigma(x)\)の符号に
スライディングモード制御の基本的な考え方として、式(1)で示す二次系システムを考える。$$\dot x = y \\ \dot y = 2y - x +u \\ u = -\phi x \;\;\; \cdots (1)$$ また、式(2)の変数\(\sigma(x,y)\)を導入する。$$\sigma(x,y) = xS, \quad S = 0.5x + y \;\;\; \cdots (2)$$ここで、フィードバックゲインを式(3)のように選ぶ。$$\phi = \l
まず、16. 離散時間システムにおける状態推定(1)の内容をまとめて示す。離散時間システムとして、式(1)を考える。$$x_{k+1} = Ax_k + v_k \\ y_k = C x_k + e_k \;\;\; \cdots (1)$$ここで、\(v_k,\; e_k\)は平均値0の正規白色雑音でそれぞれの分散を\(R_v,\; R_e\)とする。また、初期状態\(x_0\)の平均値を\(m\) 、分散を\(R_0\)とする。状態推定器は式(2)とする。$$\hat{
先に訪れた9. 真木大堂(国東半島)に続いて、国東半島の寺社参りをした。今回は、国東半島のほぼ中央の山間に位置する文殊仙寺を目指して車を走らせた。宇佐方面から豊後高田市街を抜けて県道548号を登っていくと、天念寺の案内看板が屡々目に入る。本来、私は目的地に計画的に向けて動き、寄り道が嫌いな性格であるが、前回の真木大堂の時と同様に何とは無く惹かれて、脇道へと入った。天念寺は養老2年(718年)、六郷満山(国東半島一帯にある寺院群の総称)を開いたと伝えられる仁聞菩薩
サーボ型一般化最小分散制御(GMVC)は、制御対象の出力が目標値に追従するように、出力の分散を最小化する制御方式である。従来の最小分散制御(MVC)に比べて、「目標追従性」が明示的に設計目的に組み込まれている。サーボ型GMVCは本質的にはモデルベースの制御方式で、以下の特徴からある程度のロバスト性を持つ。・出力フィードバック構造:モデル不確かさがある程度許容される。・目標追従と外乱抑制のバランス:外乱やモデル誤差が存在しても、リファレンス追従性を確保できるよう設計されている
閉ループ制御系で外部入力として目標値、外乱があり、それらの変化によって定常偏差が生じるときは、内部モデル原理に基づいて制御系の構造を見直す必要がある。外部入力がステップ状に変化する場合には、そのモデルとして\(\frac{1}{1-q^{-1}}\)(積分器)を前置補償器として設ける。図1に制御対象の前に補償器\(\frac{1}{\Delta}\)を設置した構成を示す。\(\Delta = 1-q^{-1}\)である。前置補償器と制御対象を併せた見かけ上の制御
最小分散制御を適用するには、制御対象は最小位相系で、むだ時間が正確にわかっている必要がある。この条件を緩和するために一般化最小分散制御が提案された。式(1)の線形離散時間モデルの制御対象を考える。$$A(q^{-1})y_k = q^{-j_m} B(q^{-1})u_k + C(q^{-1})e_k \;\;\; \cdots (1)$$ここで、$$A(q^{-1}) = 1 + a_1 q^{-1} + a_2 q^{-2} + \cdots a_n q^{-n} \\
※最小分散制御(1)の内容を再整理する。数式表現が異なるが、こちらの方が分かりやすいと思う。式(1)の線形離散時間モデルで記述されるシステムを考える。$$A(q^{-1})y_k = q^{-j}B(q^{-1})u_k + C(q^{-1})e_k \;\;\; \cdots (1)$$ここで、\(y_k\)は出力信号、\(u_k\)は入力信号、\(e_k\)は平均値ゼロの白色雑音、\(q^{-1}\)はシフトオペレータ、である。\(A(q^{-1}),\; B(
最小分散制御(Minimum Variance Control, MVC)は、システムの出力の分散を最小化することを目的とした制御手法である。これは、特にランダムな外乱やノイズの影響を受けるシステムに対して、できるだけ安定した出力を得るために用いられる。手法として、むだ時間分先の出力を予測し、その予測値に基づいて現時刻の操作量を決定する。この制御により、むだ時間を有するシステムに対して追従特性に優れた制御系を設計できるが、対象とするシステムにいくつかの厳しい前提条件を必要と
対象とするシステムのパラメータが未知であるとき、入出力データに基づいてパラメータを同定する。これをシステム同定という。同定法の基本である最小二乗同定は、システムの入力と出力の観測データから、システムのパラメータを推定する手法である。特に、線形離散時間モデルでは、時系列データに基づいてシステムのダイナミクスを推定する際に広く用いられる。線形離散時間モデルは式(1)で記述される。$$A(q^{-1})y_k = q^{-j}B(q^{-1})u_k + C(q^{-1})e_k
PCを個人で手に入れたのが1979年(シャープ:MZ-80K)だった。大学の研究室では、AppleⅡ、ソード、PC-8001などが徐々に使えるようになっていった。実験では、主にボードコンピュータ(TK-80)にA/Dなどを外部拡張して使っていた。その後、会社でIBM-PCやラップトップPCなどにより、計算、文書作成をしていた。当時のPCは非力だったので、シミュレーションなどの複雑な計算では、スパコンを使っていた。その後、インターネットが普及し、PCが計算や文書作成だけでなく
ARMAモデルは、時系列データを扱うときによく使われるモデルで、データの自己相関やランダムなノイズを考慮して、将来の値を予測するのに役立つ。ARMAモデルは、以下の2つの要素を組み合わせたモデルである。・AR(Auto-Regressive, 自己回帰)モデル・MA(Moving Average, 移動平均)モデルこれらを組み合わせることで、時系列データの現在の値が過去の値とノイズの影響を受けるという現象を表現できる。式(1)で表せる。$$x(t) = c + \sum_{
※離散時間システムの応答に関しては、5. 離散時間システムの応答、9. 離散時間システムの構造を参照願います。8-1. 固有値が正または零の実数固有値\(\lambda_i\)が正または零の実数のとき、\(\lambda_i^k x_i(0)\)の振る舞いを図示せよ。ただし、\(x_i(0) = 8\)とする。解答例: 固有値\(\lambda_i\)が正の実数なので、固有値の大きさが1よりも大きい場合は、\(\lambda_i^k\)は発散する。1
※離散時間系に関しては、 4. 連続時間システムの離散化 を参照願います。7-1. 差分方程式からパルス伝達関数へ離散時間システムの差分方程式が式(1)で与えられている。このシステムのパルス伝達関数を求めよ。$$y(k+n) + a_1y(k+n-1) + \cdots + a_{n-1}y(k+1) +a_n y(k) \\ = b_0 u(k+m) + b_1 u(k+m-1) + \cdots + b_m u(k) \quad(n \gt m) \;\
ロートルが生成AIを使ったプログラミングを経験している話。なお、私の使い方が正しいのか分からないので、正しいエンジニアを目指す人は、正しい学習に励んでください。ChatGPT(無料版)やGemini(当然、無料版)、Google Colabを適当に使ってプログラミングをしている。成果はこちらへ。スクリプトの作成手順としては、まずChatGPTに問題を与えて、プログラミング言語を指定する。これだけでスクリプトを作成してくれる。プログラミング言語は、分野が制御工学系なので主にS
※\(\mathcal{Z}\)変換に関することは 2. Z変換法 を参照願います。6-1. 指数関数の\(\mathcal{Z}\)変換指数関数\(x(t) = e^{\alpha t},\; t \ge 0\) を周期\(T\)でサンプルして得た信号値系列を\(\mathcal{Z}\)変換せよ。解答例: 周期\(T\)でサンプルして得た信号値系列は、\(e^0,\;e^{\alpha T},\; e^{2\alpha T},\; e^{3\al
※定常特性に関しては、27. 定常特性と内部モデル原理 を参照願います。5-1. 定常位置偏差の計算フィードバック制御系の開ループ伝達関数\(L(s)\)が式(1)で与えられているとき、目標値が大きさ\(5\)でステップ状に変化したときの定常位置偏差\(e(\infty)\)を求めよ。$$L(s) = \frac{40(s+5)}{s^3 + 7s^2 + 18s +24} \;\;\; \cdots (1)$$図1 フィードバック制御系
4-1. 安定なシステム特性方程式が式(1)のとき、このシステムの安定判別を行え。$$s^5 +8s^4 + 25s^3 + 40s^2 + 34 s + 12=0 \;\;\; \cdots (1)$$解答例: 式(1)は、安定であるための必要条件が成り立っている。つまり特性方程式の係数が全て「正」である。次に、ラウス表を作成する。※ラウス表の作成方法に関しては、17. 安定判別 を参照願います。\(s^5\)行12534\(s^4\)行84012
3-1. オーバーシュートする要素の時間応答式(1)の伝達関数の単位ステップ応答を計算せよ。また、\(T_1 = 1,\;T_2=2,\;T_3=0.5,5,10\)としたときの、極と零点の位置、ボード線図と時間応答を示せ。$$G(s)=\frac{1+ T_3 s}{(1+T_1 s)(1+T_2 s)} \;\;\; \cdots (1)$$解答例:単位ステップ信号のラプラス変換は、\(U(s) = 1/s\)なので、単位ステップ応答は、$$Y(s) =
式(1)で表記する1入力\(n\)次元定係数線形システムを制御対象とする。$$\dot{x}(t) = A x(t) + b u(t) \\ y(t) = c x(t) \;\;\cdots \cdots (1)$$式(1)のシステムは可観測、可制御とする。さらに、状態変数\(x_1(t) \sim x_n(t)\)が直接観測できるとすると、入力を$$u(t) = -f x(t) \;\;\cdots \cdots(2)$$とすることで、状態フィードバック制御が構成できる。
※可観測性の解説は、11. 可観測性 、9. 対角正準形 を参照願います。システムを$$\dot{x}(t) = A x(t) + b u(t) \\ y(t) = cx(t) \;\; \cdots \cdots (1) $$で表す1入力1出力の\(n\)次元システムとする。可観測性の条件可観測性は以下のように表すことができる。(1)式(1)を対角正準形で表現したとき、すべての\(\tilde{c}_i\)がゼロでないとき、システムは可観測である。(2)あ
※可制御性の解説は、10. 可制御性、12. 可制御正準系 を参照願います。※固有値、固有ベクトルの計算手順の詳細については、固有値と固有ベクトルの計算 を参照願います。座標変換1入力1出力\(n\)次元システム $$\dot{x}(t) = Ax(t) + bu(t) \\ y(t) = cx(t) \; \cdots\cdots(1)$$を正則な\(n \times n\)定数行列\(T\)によって座標変換$$x(t) = T z(t)$$すると、$$\
制御対象を入力\(m\)、出力\(l\)の\(n\)次元の線形定係数システムとする。$$\dot{x}(t) = A x(t) + B u(t) \;\cdots \cdots (1) \\ y(t) = C x(t)\; \cdots\cdots (2)$$ここで、 \(x(t) , \;\;\; u(t), \;\;\; y(t) \)は、それぞれ\(n,\;m,\;l\)次元のベクトル、また、\(A \; (n \times n),\;\;\; B \;(n \tim
システムの特性を以下の状態方程式(式(1))、出力方程式(式(2))で表現する。$$\dot{x}(t) = A x(t) + B u(t) \;\;\cdots \cdots (1)\\y(t) = C x(t) \;\;\cdots \cdots (2)$$ \(x(t)\):状態変数、\(u(t)\):入力変数、\(y(t)\):出力変数、\(A\):システム行列、\(B\):入力行列、\(C\):出力行列※状態方程式の詳細に関しては、3. 動的システムの状態方程式表
インピーダンスを精度よく測定するために重要な要素は、測定条件の最適化である。インピーダンス測定器(LCRメータやインピーダンスアナライザなど)を使用する際に必要となる基本的な設定条件をまとめる。 (1) 周波数:最も基本的な条件が周波数である。全ての電子部品には周波数特性が有り、周波数によってインピーダンス値は変化する。インピーダンス測定器の測定精度は、周波数やインピーダンス値に応じて変化する。(2) 信号レベル:測定端子から出力される交流信号を測定対象に印加するが、その信
インピーダンスは、抵抗、キャパシタ(コンデンサ)、インダクタ(コイル)などの電気的性質を複素数で表したものである。インピーダンスの測定には、以下の2つの方法がある。1.直流法:オームの法則に基づいてインピーダンスを測定する方法で、抵抗器両端の電圧と、回路に流れる電流を測定し、電圧を電流で割ることでインピーダンスを求める。直流法は、比較的簡単な方法であるが、測定対象が直流動作なので、測定対象のインピーダンスが抵抗のみの場合に使用できる。2.交流法:交流法は、交流信号を用いてイ
温度センサは、物体や環境の温度を測定し、電気信号に変換するセンサである。温度センサは、主に以下の種類に分類される。*接触式温度センサ・測温抵抗体 :白金等の金属または金属酸化物の電気抵抗値が温度によって変化する性質を利用したセンサ。高精度で安定性があるが、高価で、熱電対に比べて応答速度が遅い。・サーミスタ(NTC,PTC,CTR):温度変化に対して電気抵抗の変化の大きい抵抗体(主に半導体)を利用したセンサ。小型で安価、応答速度が速いが、精度が低く、温度範囲が狭い。・熱電対:
力 センサは、物体に加わる力やトルクを電気信号に変換するセンサで、ロボットや工作機械、自動車、医療機器など、さまざまな分野で広く使用されている。力 センサには、以下のような種類がある。・ひずみゲージ式:金属箔、金属線などで構成されたひずみゲージに力が加わると、抵抗値が変化する性質を利用したセンサで、高精度で小型だが、温度変化の影響を受けやすい。・圧電式(ピエゾ式、半導体式):機械的応力を受けると電荷を生成する物 質(圧電材料)を利用したセンサ、応答速度が速く、高温・高圧環境
チェビシェフフィルタは、フィルタの一種で、バターワースフィルタに比べてロールオフ(フィルタの帯域の端における通過特性の変化の急峻さ)が急勾配で、通過帯域にリップルがある場合(第一種)と阻止帯域にリップルがある場合(第二種)がある。・第一種チェビシェフフィルタ:ローパスフィルタの特性は、リップル係数とチェビシェフ多項式によって決まる。通過帯域ではリップルがあるため、高調波を含む信号には適していない。ただし、リップルは通過帯域における信号の反射を調整し、電圧定在波比(VSWR)
ベッセルフィルタは、群遅延が最大限平坦になるようにしたアナログフィルタである。位相特性が線形になるため、方形波などの波形を入力しても、歪みの少ない出力波形を得ることができる。※群遅延:周波数によって信号の伝搬時間が変わる現象。群遅延\(\tau_g\)は、入力波形と出力波形の位相差\(\phi\)を角周波数\(\omega\)で微分することで求められる。\(\tau_g = -\frac{d \phi}{d\omega}\)以下にベッセルフィルタの特徴をまとめる。・群遅延の
バターワースフィルタは、通過帯域における周波数特性が最大限平坦になるように設計されたアナログフィルタの一種である。リップルと呼ばれる通過帯域におけるゲインの変動がなく、減衰特性は周波数の平方根に比例する。バタワースフィルタの特徴は、・通過帯域が平坦: 通過帯域における周波数特性が平坦なので、信号の歪みを最小限に抑えることができる。・減衰特性: 減衰特性は、周波数の平方根に比例する。・設計が容易: 数学的な計算が比較的簡単であるため他のフィルタに比べて設計が容易。バタワースフ
磁気測定は、磁場の強さや特性を評価するための手段で、主に次の2種類の測定法がある。1)磁束密度の測定:磁束密度とは、単位面積あたりの磁束の量である。磁束密度を測定するには、ガウスメータやテスラメータなどの磁束密度計を使用する。2)磁場の測定:磁場とは、磁力線の向きと強さを表す。磁場を測定するには、ホール素子や磁気センサなどの磁場センサを使用する。磁気測定は、モータやスピーカの開発、磁石の特性評価、電子機器の設計など、さまざまな分野で重要である。適切な測定器(フラックスメータ
計器用変圧器は、電力系統の高電圧・大電流を、計器や保護継電器が扱える低電圧・小電流に変換するための機器である。電圧計用変圧器 (VT)VT(Voltage Transformer)は、高電圧を計器や保護継電器が扱える低電圧に変換する。一般的に、一次側電圧は100V~765kV、二次側電圧は100Vや110Vに変圧するのが一般的である。原理は変圧器(トランス)と同じで、1次側と2次側の巻数比によって変圧比が決まる。ただし、\(N_1 >N_2\)である。図
カレントミラー回路は、BJT、FETなどの能動素子を用いて、入力電流を一定の割合で複製する電子回路である。入力電流を基準電流と呼び、コピーされた電流をミラー電流と呼ぶ。カレントミラー回路は、電流源、アクティブロード、バイアス回路など、様々な用途に使用される。特に、高精度な電流源を実現するために多く使用される。図1にカレントミラー回路の使用例として、オペアンプ(IC)の簡易等価回路を示す。ここで、カレントミラー回路は、差動増幅回路を構成している2つのFETに等しい
電力は、電流と電圧の積として定義される。電力の測定は、通常、電力計を使用して行われる。電力の測定法に関する基本的な事項は、以下である。1)電力を測定するためには、適切な電力計を選択する。電力計には、直流または交流の電力を測定するためのものがあり、測定範囲に合った電力計を選ぶことが重要である。2) 電力計は通常、電流と電圧の両方を同時に測定することができる。電力計を正確に使用するためには、電流計と電圧計を正しい位置に接続する。一般的には、電流計は回路に直列に、電圧計は回路に並
電圧計は、ある2点間の電位差を測る電気計器である。指針形電圧計は、指針形電流計の原理を応用して作られており、電流計に抵抗値の大きな抵抗を接続することで、電流計に流れる電流を制限して、その電流計に微小に流れる電流を測定し、電圧に換算する。指針形電圧計の内部には、磁針と磁場を発生させるコイルが組み込まれている。電圧計の端子に電圧を印加すると、電流が流れ、コイルに磁場が発生する。磁場が磁針に作用して、磁針が回転する。磁針の回転量は、印加された電圧の大きさに比例する。磁針の回転量を
離散フーリエ変換(Discrete Fourier Transform:DFT)は、離散的な信号やデータ列を周波数成分に変換する手法である。これは、信号処理やデータ解析の分野で広く使用されている。離散フーリエ変換は、離散時間信号から成る有限の信号を、異なる周波数成分に分解する操作である。この変換によって、元の信号がどのような周波数成分で構成されているかを分析することが可能になる。また、離散フーリエ変換は、計算が比較的簡単であり、効率的にアルゴリズム化できるため、実用的なアプ
※離散時間システムの周波数応答(ディジタル制御)も参考にどうぞ。LTIシステムのインパルス応答を\(h(n)\)として、そのシステムに複素正弦波数列の入力\(x(n) = e^{j n \omega T}\)を印可した時の出力\(y(n)\)は、$$y(n) = h(n) \ast e^{j n \omega T} = \sum_{k=0}^{\infty} h(k) e^{j (n - k) \omega T} \\= \left[ \sum_{k=0}^{\in
離散時間システムを記述する式(1)に示す差分方程式から分かるように、入力\(x(n)\)に対する出力\(y(n)\)の計算は、積和演算を実行すればよい。$$y(n) = \sum_{k=0}^{M} a_k x(n-k) - \sum_{k=1}^{N} b_k y(n-k) \;\cdots\cdots(1)$$一般に離散時間システムは、図1に示す加算器、乗算器、遅延器の3つの基本要素としてシステムを構成することができる。実際の演算は、多くの場合、2進数のディジタル演算で