メインカテゴリーを選択しなおす
#Scilab
INポイントが発生します。あなたのブログに「#Scilab」ハッシュタグのバナーを掲載しませんか ハッシュタグのバナーやリンクをINポイントランキングの対象にしたいメンバーの方は、ログインしてからリンクタグを取得してください ・バナーを変更したい場合は、必ず画像に「ハッシュタグ」または「タグ」の文字かバナーロゴを重ねてください
タグをコピーしました
【入門】フーリエ級数②【数値計算】
フーリエ級数について説明。 sin関数だけでなく、cos関数も使用する。 a0/2はバイアスを想定した係数。 プログラム化は、フーリエ係数の話の後に、フーリエ級数含めてプログラム化予定。
2024/08/18 21:36
Scilab
フォローできる上限に達しました。
新規登録/ログインすることでフォロー上限を増やすことができます。
フォローしました
リーダーで読む
MATLAB,Python,Scilab,Julia比較 第5章 その18【複雑な定積分⑧】
複雑な定積分をJuliaで求めた。 同様に円周率が答えとして算出。 小数点第6位まで一緒。 Nを増やせばもっと精度は上がる。
2024/08/18 21:35
MATLAB,Python,Scilab,Julia比較 第5章 その7【偶関数と奇関数①】
フーリエ係数の話に突入。 フーリエ係数へ至る道を説明。 大半が「三角関数の直交性」に必要な知識。 偶関数、奇関数を利用した数学パズルっぽいのもやる予定。
2024/08/17 20:42
MATLAB,Python,Scilab,Julia比較 第5章 その8【偶関数と奇関数②】
偶関数について説明。 単純にy軸に対して線対称な関数。 この特性から-L~Lの範囲の定積分は、0~Lの範囲の定積分の2倍となる。
MATLAB,Python,Scilab,Julia比較 第5章 その9【偶関数と奇関数③】
奇関数について説明。 単純に原点に対して展対称な関数。 この特性から-L~Lの範囲の定積分は、必ず0になる。
MATLAB,Python,Scilab,Julia比較 第5章 その17【複雑な定積分⑦】
複雑な定積分をScilabで求めた。 同様に円周率が答えとして算出。 小数点第6位まで一緒。 Nを増やせばもっと精度は上がる。
2024/08/17 20:41
MATLAB,Python,Scilab,Julia比較 第5章 その10【偶関数と奇関数④】
偶関数と奇関数の積の重要な特性について説明。 結論としては以下になるだけ。 偶関数×偶関数=偶関数。 奇関数×偶関数=奇関数。 奇関数×奇関数=偶関数。
2024/08/17 14:26
【入門】偶関数と奇関数①【数値計算】
フーリエ係数の話に突入。 フーリエ係数へ至る道を説明。 偶関数について説明。 単純にy軸に対して線対称な関数。
2024/08/17 14:25
【入門】偶関数と奇関数②【数値計算】
奇関数について説明。 単純に原点に対して展対称な関数。 偶関数と奇関数の積の重要 結論としては以下になるだけ。 偶関数×偶関数=偶関数 奇関数×偶関数=奇関数 奇関数×奇関数=偶関数
MATLAB,Python,Scilab,Julia比較 第5章 その11【複雑な定積分①】
偶関数、奇関数を駆使する数学パズルを実施。 細かいことは置いておいて、雰囲気のみでざっくり解説。 奇関数が確定すれば0にできる。 偶関数が確定すれば線対称を利用して積分範囲を半分にした上で2倍にすればOK。
MATLAB,Python,Scilab,Julia比較 第5章 その16【複雑な定積分⑥】
複雑な定積分をPythonで求めた。 同様に円周率が答えとして算出。 小数点第6位まで一緒。 Nを増やせばもっと精度は上がる。
2024/08/17 14:02
MATLAB,Python,Scilab,Julia比較 第5章 その12【複雑な定積分②】
前回の数学パズルを真面目に解いてみる。 まずは平方根の関数の正体を探る。 結果としては半円の方程式と言うことになる。 これで構成される関数が偶関数か奇関数か特定できたことになる。
2024/08/16 16:53
MATLAB,Python,Scilab,Julia比較 第5章 その13【複雑な定積分③】
偶関数、奇関数の特性を利用しまくって定積分を最適化しまくる。 ほとんどが0に消えて、半円の方程式だけが残る。 さらに偶関数の特性を利用して四分円にする。 半径2の円を四等分すれば答えが出る。
MATLAB,Python,Scilab,Julia比較 第5章 その14【複雑な定積分④】
複雑な関数も無限次元ベクトルと見なすと力業で解くことが可能。 複雑な定積分を無限次元ベクトルとして表現。 これをプログラムとして解いていく。
MATLAB,Python,Scilab,Julia比較 第5章【バックナンバー】
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
【入門】複雑な定積分①【数値計算】
【入門】複雑な定積分②【数値計算】
前回の数学パズルを真面目に解いてみる。 まずは平方根の関数の正体を探る。 偶関数、奇関数の特性を利用しまくって定積分を最適化しまくる。 ほとんどが0に消えて、半円の方程式だけが残る。 さらに偶関数の特性を利用して四分円にする。 半径2の円を四等分すれば答えが出る。
2024/08/16 13:20
【入門】複雑な定積分③【数値計算】
MATLAB,Python,Scilab,Julia比較 第5章 その15【複雑な定積分⑤】
複雑な定積分をMATLABで求めた。 同様に円周率が答えとして算出。 小数点第6位まで一緒。 Nを増やせばもっと精度は上がる。
2024/08/16 13:18
13. FIRフィルタの設計
FIRフィルタの設計では、フーリエ級数展開法で求めたインパルス応答に窓関数を掛ける窓関数法が代表的である。窓関数法によるフィルタの設計手順は、以下である。1)仕様決定:・フィルタの種類(LPF、HPF、BPF、BRFなど)・カットオフ周波数、阻止域減衰量、許容されるリップル量の決定2)窓関数の選択・矩形窓、ハミング窓、カイザー窓など、様々な窓関数があり、各窓関数によって、周波数特性やリップル量が異なる。必要な仕様を満たせる窓関数を、特性比較表などを参考に選択する。3)フィル
2024/05/04 20:47
12. FIRディジタルフィルタ
ディジタルフィルタの構成ディジタル信号処理の分野で、ディジタルフィルタは基本的で重要な技術で、様々な領域で活用されている。ディジタルフィルタは、特定周波数範囲の信号の伝送や除去などアナログフィルタと同じ目的で使用されるが、図1に示すように、連続時間の入力信号をサンプラーによる標本化、AD変換器による2進数のディジタル信号への変換、ディジタルフィルタ演算、DA変換器による連続時間の出力信号への変換、という操作を必要とする。これらの操作は煩雑ではあるが、以下のような様々
2024/04/29 19:29
22. 可制御性(演習)
※可制御性の解説は、10. 可制御性、12. 可制御正準系 を参照願います。※固有値、固有ベクトルの計算手順の詳細については、固有値と固有ベクトルの計算 を参照願います。座標変換1入力1出力\(n\)次元システム $$\dot{x}(t) = Ax(t) + bu(t) \\ y(t) = cx(t) \; \cdots\cdots(1)$$を正則な\(n \times n\)定数行列\(T\)によって座標変換$$x(t) = T z(t)$$すると、$$\
2024/04/27 17:24
23. 可観測性(演習)
※可観測性の解説は、11. 可観測性 、9. 対角正準形 を参照願います。システムを$$\dot{x}(t) = A x(t) + b u(t) \\ y(t) = cx(t) \;\; \cdots \cdots (1) $$で表す1入力1出力の\(n\)次元システムとする。可観測性の条件可観測性は以下のように表すことができる。(1)式(1)を対角正準形で表現したとき、すべての\(\tilde{c}_i\)がゼロでないとき、システムは可観測である。(2)あ
21. システムの応答(演習)
制御対象を入力\(m\)、出力\(l\)の\(n\)次元の線形定係数システムとする。$$\dot{x}(t) = A x(t) + B u(t) \;\cdots \cdots (1) \\ y(t) = C x(t)\; \cdots\cdots (2)$$ここで、 \(x(t) , \;\;\; u(t), \;\;\; y(t) \)は、それぞれ\(n,\;m,\;l\)次元のベクトル、また、\(A \; (n \times n),\;\;\; B \;(n \tim
2024/04/27 17:23
24. 極配置法(演習)
式(1)で表記する1入力\(n\)次元定係数線形システムを制御対象とする。$$\dot{x}(t) = A x(t) + b u(t) \\ y(t) = c x(t) \;\;\cdots \cdots (1)$$式(1)のシステムは可観測、可制御とする。さらに、状態変数\(x_1(t) \sim x_n(t)\)が直接観測できるとすると、入力を$$u(t) = -f x(t) \;\;\cdots \cdots(2)$$とすることで、状態フィードバック制御が構成できる。
2024/04/27 16:13