画像認識の全体像を因果関係図で整理し、AlexNetを起点に各モデルの進化をたどる。一般物体認識から物体検出・セグメンテーション・姿勢推定まで、各カテゴリの代表モデルと技術を解説。モデル同士の構造的なつながりや技術的背景を踏まえ、因果関係をもとに体系的に理解を深めていく。
シミュレーションで実物を扱わなくても仕事ができる環境を目指す。つまり家に引きこもって外に出なくてもOKな世界。
GUGA 生成AIパスポート試験 2023年版、2025年版シラバスを比較してみた
生成AIパスポート試験の2023年版シラバスと2025年版シラバスを比較してみた。 時代に合わせて新しい機能、モデルが追加。 AI事業者ガイドライン(第1.0版)発表に伴い、ガイドライン関連が整理され、ガバナンス、主体についても言及されるように。
MATLAB,Python,Scilab,Julia比較 第5章 その60【マクローリン展開⑥】
sin関数をマクローリン展開。 とりあえず微分しまくると4階微分の周期が見える。 これを元にマクローリン展開。 sin関数をマクローリン展開したプロットも出してみた。
MATLAB,Python,Scilab,Julia比較 第5章 その59【マクローリン展開⑤】
cos関数をマクローリン展開。 とりあえず微分しまくると4階微分の周期が見える。 これを元にマクローリン展開。 cos関数をマクローリン展開したプロットも出してみた。
MATLAB,Python,Scilab,Julia比較 第5章 その58【マクローリン展開④】
マクローリン展開について説明。 指数関数をマクローリン展開してみた。 さらにマクローリン展開したものをグラフ化。 nが増えれば近似度合いも上がる。
MATLAB,Python,Scilab,Julia比較 第5章 その57【マクローリン展開③】
テイラー級数とマクローリン級数を比較。 任意の点x0が原点になったものがマクローリン級数。 よって、テイラー級数の拡張というよりも制限版であり、シンプルになったものと思った方が妥当。
MATLAB,Python,Scilab,Julia比較 第5章 その56【マクローリン展開②】
テイラー級数について説明。 数式も書き出し。 過去に何度か扱っているものなので実際の効果については確認しない。 代わりにマクローリン級数の時に実施予定。
MATLAB,Python,Scilab,Julia比較 第5章 その55【マクローリン展開①】
いままでやってきたのは実数フーリエ。 ということは複素フーリエが・・・。 複素フーリエに至る道を記載。
フーリエ級数、フーリエ係数の任意周期版のプログラムをJuliaで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
フーリエ級数、フーリエ係数の任意周期版のプログラムをScilabで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
フーリエ級数、フーリエ係数の任意周期版のプログラムをPythonで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
フーリエ級数、フーリエ係数の任意周期版のプログラムをMATLABで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その54【フーリエ級数(周期2L)⑦】
フーリエ級数、フーリエ係数の任意周期版のプログラムをJuliaで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その53【フーリエ級数(周期2L)⑥】
フーリエ級数、フーリエ係数の任意周期版のプログラムをScilabで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その52【フーリエ級数(周期2L)⑤】
フーリエ級数、フーリエ係数の任意周期版のプログラムをPythonで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
MATLAB,Python,Scilab,Julia比較 第5章 その51【フーリエ級数(周期2L)④】
フーリエ級数、フーリエ係数の任意周期版のプログラムをMATLABで作成。 -π~πだけでなく、-10~10のような任意の周期に適応可能。
任意周期のフーリエ級数、フーリエ係数のプログラム化検討。 基本的には以前の使い回し。 波形データの解釈や、数式が変わるのみ。の予定。
前回までのフーリエ級数、ふーりけ係数には周期2πという制約がある。 三角関数の直交性を得るための制約。 フーリエ級数を伸縮するための検討。 xがπと認識するように係数を掛けてあげればOK。 フーリエ係数も、πがLになるように式を変更すればOK。
MATLAB,Python,Scilab,Julia比較 第5章 その50【フーリエ級数(周期2L)③】
任意周期のフーリエ級数、フーリエ係数のプログラム化検討。 基本的には以前の使い回し。 波形データの解釈や、数式が変わるのみ。の予定。
MATLAB,Python,Scilab,Julia比較 第5章 その49【フーリエ級数(周期2L)②】
フーリエ級数を伸縮するための検討。 xがπと認識するように係数を掛けてあげればOK。 フーリエ係数も、πがLになるように式を変更すればOK。
MATLAB,Python,Scilab,Julia比較 第5章 その48【フーリエ級数(周期2L)①】
前回までのフーリエ級数、ふーりけ係数には周期2πという制約がある。 三角関数の直交性を得るための制約。 周期を変えるには、周期の伸縮を考えると解決できるかも?
フーリエ係数を求めるプログラムをJuliaで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
フーリエ係数を求めるプログラムをScilabで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
フーリエ係数を求めるプログラムをPythonで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
フーリエ係数を求めるプログラムをMATLABで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その47【フーリエ係数⑪】
フーリエ係数を求めるプログラムをJuliaで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その46【フーリエ係数⑩】
フーリエ係数を求めるプログラムをJuliaで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その45【フーリエ係数⑨】
フーリエ係数を求めるプログラムをPythonで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
MATLAB,Python,Scilab,Julia比較 第5章 その44【フーリエ係数⑧】
フーリエ係数を求めるプログラムをMATLABで実現。 おおよそ元の波形を再現できる係数が算出できている。 不連続点では流石に振動している。
フーリエ係数を求めるプログラムを作成予定。 フーリエ係数で係数を求め、その係数を利用してフーリエ級数で波形を再現する方式。 nを大きくすることで、波形がどう変化するかがポイント。
フーリエ係数を求める一般化された式のまとめ。 a0が1/2されている理由を説明。 フーリエ係数のbnを求める式の一般化。 ついでにa0を求める式も一般化。 常に1のような定数関数は畳み込み積分に於いては矩形波をイメージすると認識しやすい。
フーリエ係数anを求める式の一般化。 流れとしては前回のa1を求める式と同じ。 フーリエ係数を求める雰囲気を感じ取るため、係数a1のみに着目。 三角関数の直交性を利用すると、フーリエ級数の各項のほとんどが0となる。 それを使用して係数a1を求める式を導出できる。
「ブログリーダー」を活用して、KEIさんをフォローしませんか?
画像認識の全体像を因果関係図で整理し、AlexNetを起点に各モデルの進化をたどる。一般物体認識から物体検出・セグメンテーション・姿勢推定まで、各カテゴリの代表モデルと技術を解説。モデル同士の構造的なつながりや技術的背景を踏まえ、因果関係をもとに体系的に理解を深めていく。
G検定まとめ記事はこちらはじめに結構昔にG検定向けの動画で、「JDLAジェネラリスト検定(G検定)さっくり対策(究極カンペの作り方)カンペを見なくても問題が解ける自分の作り方。」というのを公開しているのだが、これに対しての問い合わせがちょく...
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
究極カンペの作り方についての問い合わせが増えている。G検定の評判を確認し、ネガティブな意見を問題提起として捉える。勉強のステージを定義し、語彙力と因果関係の把握が重要であることを説明。
フーリエ変換には角周波数を扱うものと周波数を扱うものがある。角周波数と周波数の間には角度と1回転という差があるのみ。よって、周波数に2πをかければ角周波数となる。
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
立ち絵の配置: PSDファイルをAviUtlに配置し、画面サイズやフレームレートを設定。のっぺらぼう化: 目と口を消して、アニメーション効果を追加。アニメーション効果: 目パチと口パクの設定を行い、リップシンクを調整。
フーリエ変換を定義。フーリエの積分公式の一部を抜き出す。逆フーリエ変換を定義。フーリエの積分公式にフーリエ変換を代入するだけ。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。区分求積法とリーマン積分について。フーリエの積分公式を導出した。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。さらにそこに加えて、AivisSpeechのアイコン画像を...
PSDToolKitプラグインの導入の仕方を説明。PSDファイルを探してGIMPで内容を確認。GIMPで瞬き用、口パク用のレイヤー編集。
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
区分求積法とリーマン積分について。離散と連続の分け目。フーリエの積分公式を導出した。演算したはずなのに変化しない。つまり変換、逆変換が成立することを示している。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。よって、一般的な表現に書き換える必要がある。
角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。ω=nπ/Lを使用して変換するだけ。これにより少し数式がシンプルになった。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。ほぼ独自に作成したが、Anneliの画像自体はAivisS...
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。変換を想定した式に変換。複素指数関数との積と積分、総和を経由すると元に関数に戻るというイメージが重要。
AviUtlのセットアップと拡張編集Pluginの導入を行った。mp4ファイルの入力と出力の方法を説明。アニメーションgifの対応方法を説明。
分数は割り算の別表現として理解しやすく、逆数を掛けることで計算が簡単になる。これにより、小数の掛け算や割り算の理解が深まる。一次関数の数式をグラフにすることや、グラフから数式を導くことは、データのトレンド分析や物理現象の理解に役立つ。微分は関数の変化率を求める手法であり、数値微分を使って近似的に求めることができる。これにより、物理学や経済学など多くの分野で応用可能。
RMSpropについて説明。 AdaGradの完了版であるため、AdaGradと更新式を比較。 AdaGradでは2次の勾配の累積だったものが、2次の勾配の指数移動平均に。 これにより、極小値近辺やプラトーになっても更新を続けられる。
AdaGradについて説明。 更新式をモーメンタムと比較。 更新幅は、最初は大きく、徐々に小さくなり、最終的には学習が進まなくなる欠点を抱えている。
もう一個試す予定の最適化アルゴリズムへ至る系譜を説明予定。 プログラム化して試すのはAdamだが、それに至るアルゴリズムを数式レベルで確認。 Adam以降の最適化アルゴリズムもあるが、基本はAdamベースでクリッピングが入ってる感じ。
最適化アルゴリズムを通常の勾配降下法からモーメンタムに変えた際の差分を確認。 モーメンタムの方が学習の収束が早い。 勾配降下法で500エポックのところ100エポック。 モーメンタムの場合、初期のパラメータ移動が大き目。 これにより、大域最適化を見つける可能性が高くなる。
最適化アルゴリズム モーメンタムを用いて分類の学習をJuliaで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をPythonで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をMATLABで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズムを通常の勾配降下法からモーメンタムに変えた際の差分を確認。 モーメンタムの方が学習の収束が早い。 勾配降下法で500エポックのところ100エポック。 モーメンタムの場合、初期のパラメータ移動が大き目。 これにより、大域最適化を見つける可能性が高くなる。
最適化アルゴリズム モーメンタムを用いて分類の学習をJuliaで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をPythonで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をMATLABで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
モーメンタムを確認するプログラムの方針を確認。 以前の勾配降下法のプログラムをベースにする。 隠れ層のユニット数は4。 プログラムのフローを確認。 モーメンタム項とパラメータ更新が基本的な差分となる。
モーメンタムの更新式について確認。 指数移動平均を利用して直近の値を重視する。 モーメンタムの動作イメージについて確認。 最初は大きく更新して、最適解が近いと小さく更新。 勾配降下法で言うところの学習率が可変と同義な動きになる。
勾配降下法の更新式を確認。 勾配降下法の動作イメージを確認。 学習率が大きい場合と小さい場合で挙動が変わる。 ちょうど良い学習率を人間の手で探す。 これにより、一般的なパラメータとは異なるハイパーパラメータというカテゴリになる。
最適化アルゴリズムを取り扱う。 今回のネットワークだとさほど恩恵はないが知っていて損はない。 まずはモーメンタムから解説&実験をしていく。 最初は復習を兼ねて勾配降下法についても確認する。
モーメンタムを確認するプログラムの方針を確認。 以前の勾配降下法のプログラムをベースにする。 隠れ層のユニット数は4。 プログラムのフローを確認。 モーメンタム項とパラメータ更新が基本的な差分となる。
モーメンタムの動作イメージについて確認。 動作イメージの表現は難しい。 最初は大きく更新して、最適解が近いと小さく更新。 勾配降下法で言うところの学習率が可変と同義な動きになる。