動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
シミュレーションで実物を扱わなくても仕事ができる環境を目指す。つまり家に引きこもって外に出なくてもOKな世界。
KEIさんが 参加中のテーマはありません。
テーマは同じ趣味や興味を持つブロガーが共通のテーマに集まることで繋がりができるメンバー参加型のコミュニティーです。
テーマ一覧から参加したいテーマを選び、記事を投稿していただくことでテーマに参加できます。
「ブログリーダー」を活用して、KEIさんをフォローしませんか?
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。よって、一般的な表現に書き換える必要がある。
角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。ω=nπ/Lを使用して変換するだけ。これにより少し数式がシンプルになった。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。ほぼ独自に作成したが、Anneliの画像自体はAivisS...
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。変換を想定した式に変換。複素指数関数との積と積分、総和を経由すると元に関数に戻るというイメージが重要。
AviUtlのセットアップと拡張編集Pluginの導入を行った。mp4ファイルの入力と出力の方法を説明。アニメーションgifの対応方法を説明。
分数は割り算の別表現として理解しやすく、逆数を掛けることで計算が簡単になる。これにより、小数の掛け算や割り算の理解が深まる。一次関数の数式をグラフにすることや、グラフから数式を導くことは、データのトレンド分析や物理現象の理解に役立つ。微分は関数の変化率を求める手法であり、数値微分を使って近似的に求めることができる。これにより、物理学や経済学など多くの分野で応用可能。
Youtube動画やブログ記事のアイキャッチ用に作成した、VOCEIVX(四国めたん、ずんだもん、春日部つむぎ)、AivisSpeech(Anneli)の画像たち。Stable Diffusionで生成&少しペン入れ&GIMPによる補正したものになります。
各種フーリエについてまとめてみた。いままでは級数→係数の順番でやっていたため、逆フーリエ変換→フーリエ変換の順番が自然。実際には「フーリエの積分公式を求める」ことになるが、これは逆フーリエ変換そのものである。
各種フーリエについてまとめてみた。いままでは級数→係数の順番でやっていたため、逆フーリエ変換→フーリエ変換の順番が自然。実際には「フーリエの積分公式を求める」ことになるが、これは逆フーリエ変換そのものである。
複素フーリエ周期2LをJuliaで確認。実数フーリエの時と同じ結果が得られた。
つるかめ算の歴史的背景を説明。つるかめ算解説。連立方程式解説。逆行列解説。
バックグラウンド動画の作成方法を解説。画像、効果音の素材収集とレイアウト決め。アニメーション効果の追加とmp4出力。
複素フーリエ周期2LをScilabで確認。実数フーリエの時と同じ結果が得られた。
複素フーリエ周期2LをPythonで確認。実数フーリエの時と同じ結果が得られた。
VOICEVOXとAivisSpeechを使った音声生成の方法や調整について解説使用するツールやプリセットの設定、調整が難しい単語や文章についての具体例を紹介リップシンク用のlabファイルの生成方法について説明
複素フーリエ周期2LをMATLABで確認。実数フーリエの時と同じ結果が得られた。
複素フーリエ周期2LをJuliaで確認。実数フーリエの時と同じ結果が得られた。
単純パーセプトロンの構造について復習。 逆伝播の復習。 重みとバイアスの連鎖律の最適化。 単純パーセプトロンで分類のプログラムのフローを確認。 学習が進むと決定境界線がどのように動くか確認。
単純パーセプトロンで分類のプログラムのフローを確認。 逆伝播の実験のときと流れは一緒。 学習が進むと決定境界線がどのように動くか確認。
重みとバイアスの連鎖律の最適化。 共通部分があるので、そこを切り出し。 プログラムの場合は、こういう共通部分を変数に格納するなどの最適化が可能。
単純パーセプトロンの構造について復習。 今回扱うのは活性化関数をシグモイド関数に差し替えたもの。 逆伝播の復習。 重みとバイアスの逆伝播は途中まで一緒。 よって表現の最適化が可能。
MATLAB、Python、Scilab、Julia比較ページはこちら はじめに の、 MATLAB,Python,Scilab,Julia比較 第4章 その64【逆伝播⑮】 を書き直したもの。 単純パーセプトロンに対する逆伝播を行う。まず
逆伝播を行った際の重みの動き方を確認するプログラムをScilabで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをPythonで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをMATLABで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをJuiaで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをScilabで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをPythonで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをMATLABで作成。 おおよそ狙ったところに収束。
全体の位置づけと各偏導関数を確認。 入力、出力(ラベル)が複数であるが故に連鎖律のルートが複数になる。 入力、出力が複数であるが故の連鎖律の事情のもう一つの考え方。 逆伝播の確認用プログラムのフローを記載。
連鎖律に於ける誤差関数の位置づけと偏導関数を確認。 活性関数(シグモイド関数)のブロック図と連鎖律上の位置づけと偏導関数を確認。 入力層のブロック図と連鎖律上の位置づけと偏導関数を確認。 バイアスのブロック図と連鎖律上の位置づけと偏導関数を確認。
誤差逆伝播法とか単純パーセプトロンに関連する用語を確認。 逆伝播を行う単純パーセプトロンの構成を確認。 一連の合成関数について書き出し。 合成関数を構成する各数式を書き出し。 合成関数の微分こと連鎖律について説明。 学習データを加味した場合の多変量関数の連鎖律について簡単に説明。
逆伝播の確認用プログラムのフローを記載。 逆伝播の挙動を確認するため、重みの開始位置とバイアスは固定。 ベクトル、行列演算をプログラム都合に合わせて表現しなおし。
入力、出力が複数であるが故の連鎖律の事情のもう一つの考え方。 誤差関数は二乗和誤差関数であり、本来であればΣが含まれる。 よって、連鎖律にもΣが含まれる形を取ると前回と同一の数式が得られる。
入力、出力(ラベル)が複数であるが故に連鎖律のルートが複数になる。 上記の図示と数式を説明。
全体の位置づけ確認。 各偏導関数を再掲。 各偏導関数を連鎖律に則して結合。
バイアスのブロック図と連鎖律上の位置づけを確認。 バイアスの偏導関数を確認。 もとの式がシンプルな上、1次で係数もないので1になる。