exoファイルを使えば、立ち絵の設定をテンプレ化して何度でも使い回せる。キャラごと・表情ごとのexoパターンを作っておけば、配置も口パクも一瞬。拡張編集にドラッグ&ドロップするだけで、作業時間が爆速短縮。
シミュレーションで実物を扱わなくても仕事ができる環境を目指す。つまり家に引きこもって外に出なくてもOKな世界。
MATLAB,Python,Scilab,Julia比較 第4章 その68【単純パーセプトロンで分類④】
単純パーセプトロンの分類をMATLABで実施。 想定通り分類可能。 おおよそ200エポックあれば分類可能。
単純パーセプトロンの構造について復習。 逆伝播の復習。 重みとバイアスの連鎖律の最適化。 単純パーセプトロンで分類のプログラムのフローを確認。 学習が進むと決定境界線がどのように動くか確認。
MATLAB,Python,Scilab,Julia比較 第4章 その67【単純パーセプトロンで分類③】
単純パーセプトロンで分類のプログラムのフローを確認。 逆伝播の実験のときと流れは一緒。 学習が進むと決定境界線がどのように動くか確認。
MATLAB,Python,Scilab,Julia比較 第4章 その66【単純パーセプトロンで分類②】
重みとバイアスの連鎖律の最適化。 共通部分があるので、そこを切り出し。 プログラムの場合は、こういう共通部分を変数に格納するなどの最適化が可能。
MATLAB,Python,Scilab,Julia比較 第4章 その65【単純パーセプトロンで分類①】
単純パーセプトロンの構造について復習。 今回扱うのは活性化関数をシグモイド関数に差し替えたもの。 逆伝播の復習。 重みとバイアスの逆伝播は途中まで一緒。 よって表現の最適化が可能。
MATLAB、Python、Scilab、Julia比較ページはこちら はじめに の、 MATLAB,Python,Scilab,Julia比較 第4章 その64【逆伝播⑮】 を書き直したもの。 単純パーセプトロンに対する逆伝播を行う。まず
逆伝播を行った際の重みの動き方を確認するプログラムをScilabで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをPythonで作成。 おおよそ狙ったところに収束。
逆伝播を行った際の重みの動き方を確認するプログラムをMATLABで作成。 おおよそ狙ったところに収束。
MATLAB,Python,Scilab,Julia比較 第4章 その64【逆伝播⑮】
逆伝播を行った際の重みの動き方を確認するプログラムをJuiaで作成。 おおよそ狙ったところに収束。
MATLAB,Python,Scilab,Julia比較 第4章 その63【逆伝播⑭】
逆伝播を行った際の重みの動き方を確認するプログラムをScilabで作成。 おおよそ狙ったところに収束。
MATLAB,Python,Scilab,Julia比較 第4章 その62【逆伝播⑬】
逆伝播を行った際の重みの動き方を確認するプログラムをPythonで作成。 おおよそ狙ったところに収束。
MATLAB,Python,Scilab,Julia比較 第4章 その61【逆伝播⑫】
逆伝播を行った際の重みの動き方を確認するプログラムをMATLABで作成。 おおよそ狙ったところに収束。
全体の位置づけと各偏導関数を確認。 入力、出力(ラベル)が複数であるが故に連鎖律のルートが複数になる。 入力、出力が複数であるが故の連鎖律の事情のもう一つの考え方。 逆伝播の確認用プログラムのフローを記載。
連鎖律に於ける誤差関数の位置づけと偏導関数を確認。 活性関数(シグモイド関数)のブロック図と連鎖律上の位置づけと偏導関数を確認。 入力層のブロック図と連鎖律上の位置づけと偏導関数を確認。 バイアスのブロック図と連鎖律上の位置づけと偏導関数を確認。
誤差逆伝播法とか単純パーセプトロンに関連する用語を確認。 逆伝播を行う単純パーセプトロンの構成を確認。 一連の合成関数について書き出し。 合成関数を構成する各数式を書き出し。 合成関数の微分こと連鎖律について説明。 学習データを加味した場合の多変量関数の連鎖律について簡単に説明。
MATLAB,Python,Scilab,Julia比較 第4章 その60【逆伝播⑪】
逆伝播の確認用プログラムのフローを記載。 逆伝播の挙動を確認するため、重みの開始位置とバイアスは固定。 ベクトル、行列演算をプログラム都合に合わせて表現しなおし。
MATLAB,Python,Scilab,Julia比較 第4章 その59【逆伝播⑩】
入力、出力が複数であるが故の連鎖律の事情のもう一つの考え方。 誤差関数は二乗和誤差関数であり、本来であればΣが含まれる。 よって、連鎖律にもΣが含まれる形を取ると前回と同一の数式が得られる。
MATLAB,Python,Scilab,Julia比較 第4章 その58【逆伝播⑨】
入力、出力(ラベル)が複数であるが故に連鎖律のルートが複数になる。 上記の図示と数式を説明。
MATLAB,Python,Scilab,Julia比較 第4章 その57【逆伝播⑧】
全体の位置づけ確認。 各偏導関数を再掲。 各偏導関数を連鎖律に則して結合。
MATLAB,Python,Scilab,Julia比較 第4章 その56【逆伝播⑦】
バイアスのブロック図と連鎖律上の位置づけを確認。 バイアスの偏導関数を確認。 もとの式がシンプルな上、1次で係数もないので1になる。
MATLAB,Python,Scilab,Julia比較 第4章 その55【逆伝播⑥】
入力層のブロック図と連鎖律上の位置づけを確認。 入力層の偏導関数を確認。 もとの式がシンプルなので偏導関数もシンプル。
MATLAB,Python,Scilab,Julia比較 第4章 その54【逆伝播⑤】
活性化関数の微分について説明。 活性関数のブロック図と連鎖律上の位置づけを確認。 シグモイド関数の導関数を復習。 シグモイド関数の偏導関数を確認。
MATLAB,Python,Scilab,Julia比較 第4章 その53【逆伝播④】
連鎖律に於ける誤差関数の位置づけを確認。 ブロック図的には一番後ろだが、連鎖律としては先頭。 誤差関数の確認。 誤差関数の偏導関数の確認。
MATLAB,Python,Scilab,Julia比較 第4章 その52【逆伝播③】
合成関数の微分こと連鎖律について説明。 学習データを加味した場合の多変量関数の連鎖律について簡単に説明。 詳細は後日。
MATLAB,Python,Scilab,Julia比較 第4章 その51【逆伝播②】
一連の合成関数について書き出し。 合成関数を構成する各数式を書き出し。 誤差関数、活性化関数、入力と重みの内積。
MATLAB,Python,Scilab,Julia比較 第4章 その50【逆伝播①】
誤差逆伝播法とか単純パーセプトロンに関連する用語を確認。 様々な都合で、単純パーセプトロンに対する誤差逆伝播法を「逆伝播」と呼称することに。 逆伝播を行う単純パーセプトロンの構成を確認。 誤差関数は二乗和誤差関数を1/2にしたもの。 1/2により微分後の数式がシンプルになる。
勾配降下法の実験をScilabで実施。 予想通り局所最適解に陥った。 局所最適解の回避方法としては学習率を状況に応じて変更する様々は最適化アルゴリズムがある。 モーメンタム、AdaGrad、Adamなどなど。
勾配降下法の実験をScilabで実施。 予想通り局所最適解に陥った。 局所最適解の回避方法としては学習率を状況に応じて変更する様々は最適化アルゴリズムがある。 モーメンタム、AdaGrad、Adamなどなど。
勾配降下法の実験をPythonで実施。 予想通り局所最適解に陥った。 局所最適解の回避方法としては学習率を状況に応じて変更する様々は最適化アルゴリズムがある。 モーメンタム、AdaGrad、Adamなどなど。
「ブログリーダー」を活用して、KEIさんをフォローしませんか?
exoファイルを使えば、立ち絵の設定をテンプレ化して何度でも使い回せる。キャラごと・表情ごとのexoパターンを作っておけば、配置も口パクも一瞬。拡張編集にドラッグ&ドロップするだけで、作業時間が爆速短縮。
G検定まとめ記事はこちらはじめに結構昔にG検定向けの動画で、「JDLAジェネラリスト検定(G検定)さっくり対策(究極カンペの作り方)カンペを見なくても問題が解ける自分の作り方。」というのを公開しているのだが、これに対しての問い合わせがちょく...
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
画像認識の全体像を因果関係図で整理し、AlexNetを起点に各モデルの進化をたどる。一般物体認識から物体検出・セグメンテーション・姿勢推定まで、各カテゴリの代表モデルと技術を解説。モデル同士の構造的なつながりや技術的背景を踏まえ、因果関係をもとに体系的に理解を深めていく。
究極カンペの作り方についての問い合わせが増えている。G検定の評判を確認し、ネガティブな意見を問題提起として捉える。勉強のステージを定義し、語彙力と因果関係の把握が重要であることを説明。
フーリエ変換には角周波数を扱うものと周波数を扱うものがある。角周波数と周波数の間には角度と1回転という差があるのみ。よって、周波数に2πをかければ角周波数となる。
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
立ち絵の配置: PSDファイルをAviUtlに配置し、画面サイズやフレームレートを設定。のっぺらぼう化: 目と口を消して、アニメーション効果を追加。アニメーション効果: 目パチと口パクの設定を行い、リップシンクを調整。
フーリエ変換を定義。フーリエの積分公式の一部を抜き出す。逆フーリエ変換を定義。フーリエの積分公式にフーリエ変換を代入するだけ。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。区分求積法とリーマン積分について。フーリエの積分公式を導出した。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。さらにそこに加えて、AivisSpeechのアイコン画像を...
PSDToolKitプラグインの導入の仕方を説明。PSDファイルを探してGIMPで内容を確認。GIMPで瞬き用、口パク用のレイヤー編集。
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
区分求積法とリーマン積分について。離散と連続の分け目。フーリエの積分公式を導出した。演算したはずなのに変化しない。つまり変換、逆変換が成立することを示している。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。よって、一般的な表現に書き換える必要がある。
角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。ω=nπ/Lを使用して変換するだけ。これにより少し数式がシンプルになった。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。ほぼ独自に作成したが、Anneliの画像自体はAivisS...
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。変換を想定した式に変換。複素指数関数との積と積分、総和を経由すると元に関数に戻るというイメージが重要。
AviUtlのセットアップと拡張編集Pluginの導入を行った。mp4ファイルの入力と出力の方法を説明。アニメーションgifの対応方法を説明。
もう一個試す予定の最適化アルゴリズムAdamへ至る系譜を説明予定。 AdaGradについて説明。 更新式をモーメンタムと比較。 RMSpropについて説明。 AdaGradの完了版であるため、AdaGradと更新式を比較。
Adamの更新式を実現するためのプログラムフローを記載。 モーメンタムの部分をAdamに差し替えただけ。 学習率は0.001とかなり小さめの値に設定。 これにより収束は遅くなる。 かわりに特殊な最適解が得られるのでそれを確認する。
各最適化アルゴリズムの依存関係を記載。 1次の勾配で勢いをつけて、2次の勾配で抑制するというのが全体を通しての共通点。 Adamが1次の勾配と2次の勾配を合わせたアルゴリズムとなる。
最適化アルゴリズムAdamについて説明。 モーメンタムとRMSpropの合わせ技。 1次の勾配と、2次の勾配の指数移動平均を使用する。
AdaDeltaについて説明。 RMSpropの拡張版に当たる。 学習率というハイパーパラメータ無しで動作する。 最終的な学習率は1近傍になるため振動しやすいらしい。
RMSpropについて説明。 AdaGradの完了版であるため、AdaGradと更新式を比較。 AdaGradでは2次の勾配の累積だったものが、2次の勾配の指数移動平均に。 これにより、極小値近辺やプラトーになっても更新を続けられる。
AdaGradについて説明。 更新式をモーメンタムと比較。 更新幅は、最初は大きく、徐々に小さくなり、最終的には学習が進まなくなる欠点を抱えている。
もう一個試す予定の最適化アルゴリズムへ至る系譜を説明予定。 プログラム化して試すのはAdamだが、それに至るアルゴリズムを数式レベルで確認。 Adam以降の最適化アルゴリズムもあるが、基本はAdamベースでクリッピングが入ってる感じ。
最適化アルゴリズムを通常の勾配降下法からモーメンタムに変えた際の差分を確認。 モーメンタムの方が学習の収束が早い。 勾配降下法で500エポックのところ100エポック。 モーメンタムの場合、初期のパラメータ移動が大き目。 これにより、大域最適化を見つける可能性が高くなる。
最適化アルゴリズム モーメンタムを用いて分類の学習をJuliaで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をPythonで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をMATLABで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズムを通常の勾配降下法からモーメンタムに変えた際の差分を確認。 モーメンタムの方が学習の収束が早い。 勾配降下法で500エポックのところ100エポック。 モーメンタムの場合、初期のパラメータ移動が大き目。 これにより、大域最適化を見つける可能性が高くなる。
最適化アルゴリズム モーメンタムを用いて分類の学習をJuliaで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をPythonで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をMATLABで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
モーメンタムを確認するプログラムの方針を確認。 以前の勾配降下法のプログラムをベースにする。 隠れ層のユニット数は4。 プログラムのフローを確認。 モーメンタム項とパラメータ更新が基本的な差分となる。