chevron_left

メインカテゴリーを選択しなおす

cancel
T_NAKA
フォロー
住所
東京都
出身
東京都
ブログ村参加

2007/03/21

arrow_drop_down
  • 測地線方程式(0-1)

    「演習形式で学ぶ一般相対性理論」の「第3章 曲がった時空における粒子の運動-3.1 測地線方程式」に入ります。 その前にこの章の導入を引用します。 [引用]---------------------------…

  • 確率の問題(3)

    [問題7]---------------------------------------------- 10 本のくじのうち当たりくじが 3 本あるとすると、このくじから 2 本引くとき、 2 本とも当たりくじである確率を求めよ。 ---------------------------------------------------

  • ちょっと聴きたくなった「白い桟橋」

    やまがたすみこさんのアルバム「サマーシェード」の収録曲ですが、なぜか聴きたくなりました。

  • ε-δ法による極限を求める問題(3)

    [問題]--------------------------- ε-δ法により、次式を証明せよ。 --------------------------------- これは当たり前すぎてどう考えたらよいでしょう。 よく分からない…

  • Gauss-Codazzi 方程式(2)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.3 Gauss-Codazzi 方程式」を続けます。 今回は例題の後半「Codazzi 方程式の導…

  • ε-δ法による極限を求める問題(2)

    [問題]--------------------------- ε-δ法により、次式を証明せよ。 --------------------------------- ε-δ法を意識しないで考えると

  • Gauss-Codazzi 方程式(1)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.3 Gauss-Codazzi 方程式」に入ります。 [引用]-----------------------------…

  • 外曲率(2)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.2 外曲率」を続けます。 [引用]------------------------------------------ …

  • ε-δ法による極限を求める問題(1)

    [問題]--------------------------- ε-δ法により、次式を証明せよ。 --------------------------------- ε-δ法を使わなければ、

  • 私にとってのシティポップス(4)

    Labyrinth / MONDO GROSSO MONDO GROSSO / IN THIS WORLD feat.Ryui…

  • 外曲率(1)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.2 外曲率」に入ります。 [引用]------------------------------------------ …

  • 解析学の基礎(2ー7)

    [例題]---------------------------- \(\lim_{x\to a}x^{2}=a^{2}\) を \(\varepsilon-\delta\) (論)法で証明せよ。 --------------------------------- \(0\) < \( x-a \) < \(\delta\) に対し

  • 解析学の基礎(2ー6)

    [定理4]--------------------------- \(\lim_{x \to a}f(x)=\alpha\;,\;\lim_{x \to a}g(x)=\beta\) ならば、 となる。ただし、\(g(\alpha)=\beta\) である。 ---------------…

  • 超曲面と射影(1ー5)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.1 超曲面と射影」を続けます。 [問題] 超曲面上の Christoffel 記号を誘導計…

  • 解析学の基礎(2ー5)

    定理3の証明を続けます。 (5) 常に \(f(x) \geq g(x)\) なら、 \(\alpha \geq \beta\) 前提から、任意に与えられた正数 \({\varepsilon}'\) に対して、 \(0\) < \( x-a \) < \( \delta\) のとき \( f(a)-\alpha \) < \({\varepsilon}'\) 、 \( g(a)-\bet…

  • 確率の問題(2)

    [問題4]--------------------------------------------- 2個のさいころを投げるとき、次の事象の確率を求めよ。 (1) 出る目の和が 8 (2) 出る目の和が 8 以下 (3) 出る目の和が 6 以上である。 (4) 出る目の積が 6 以上かつ 13 以下である。 -------------------…

  • R.I.P Roberta Flack

    2025.2.25 に歌手のロバータ・フラックさんが亡くなったそうです(享年88歳)。 ご冥福をお祈りいたします。 良く聴いたのは次に "Killing Me Softly With His Song" (やさしく歌って)です。 一時、替え歌がネスカフェのCMソングになってましたね。 Killing Me Softly With His Song

  • 超曲面と射影(1ー4)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.1 超曲面と射影」を続けます。 [引用]-------------------------------------…

  • 解析学の基礎(2ー4)

    定理3の証明を続けます。 もし、

  • 超曲面と射影(1ー3)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.1 超曲面と射影」を続けます。 [引用①]-----------------------------------…

  • 超曲面と射影(1ー3)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.1 超曲面と射影」を続けます。 [引用①]-----------------------------------…

  • 外曲率(1-2)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.2 外曲率」を続けます。 [引用]------------------------------------------ …

  • 解析学の基礎(2ー3)

    定理3の証明を続けます。

  • 確率の問題(1)

    この手の確率の問題には苦手意識があるので簡単な問題からやってみます。 [問題1]--------------------------------------------- 1枚の硬貨を2回続けて投げるとき、その確率を求めよ。 (1) 2回とも表が出る確率 (2) 少なくとも1回表が出る確率 ----------------------…

  • 私にとってのシティポップス(3)

    色彩都市 - 大貫妙子 私の中のシティポップスでは大貫さんが大きな…

  • 超曲面と射影(1ー2)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.1 超曲面と射影」を続けます。 [引用]-------------------------------------…

  • 解析学の基礎(2ー2)

    「1.2 関数の極限値」を続けます。 [定理3]--------------------------- \(\lim_{x \to a}f(x)=\alpha\;,\;\lim_{x \to a}g(x)=\beta\) のとき、\((1)\sim (5)\) が成立する。

  • 超曲面と射影(1ー1)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.2 外曲率とGauss-Codazzi 方程式 -2.2.1 超曲面と射影」に入ります。 まず、「外曲率とGauss-Codazzi 方程式 」の「外…

  • 解析学の基礎(2ー1)

    1.2 関数の極限値 [引用]---------------------------- 関数 \(f(x)\) において、実数 \(x\) が \(a\) 以外の値をとりながら実数 \(a\) に収束するとき、その収束の仕方に、無関係 \(f(x)\) が定数 \(b\) に収束するなら、 \(\lim_{x \to a}f(x)=b\) または \(f(x)\…

  • 曲率(6ー3)

    「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 [引用]----------------------------------------- Weyl 一般座標変換…

  • 明日は雛祭りですね。

    民俗学がわかる事典に「7. 雛人形はなぜ、3月3日をすぎたら飾ってはいけないのか」という項目があったので、ちょっと抜き書きします。 もともと雛人形は人形として保管し、毎年その時季になると出して飾るというような性格ではなかった。 『源氏物語』須磨の巻: 三月上巳の日、陰陽師を招いて祓をおこない、その折に使用したカタシロ(…

  • Moonlight Reverse の MV を見入ってしまった。。

    リガ-ルリリ- の ムーンライトリバース という曲の MV なんですが、ほとんどがお姉さん役の杉咲花さんがメイクしているのと、それを見ている弟という場面で、ちょっと彼氏らしい男性のカットが挟まれますが、最後になってその状況が分かるというストーリー構成になっています。 Regallily - 『Moonlight Reverse』Music Video

  • 測地線方程式(0-3)

    「演習形式で学ぶ一般相対性理論」の「第3章 曲がった時空における粒子の運動-3.1 測地線方程式」を続けます。 [例題]------------------------------------------ 前問で示された接続 …

arrow_drop_down

ブログリーダー」を活用して、T_NAKAさんをフォローしませんか?

ハンドル名
T_NAKAさん
ブログタイトル
T_NAKAの阿房ブログ
フォロー
T_NAKAの阿房ブログ

にほんブログ村 カテゴリー一覧

商用