たまには日本のフォークでも。。 ということで「もう引き返せない」をリンクしました。 いろいろな人がカヴァーしてますが、まず中川イサトさんから、、 もう引き返せない
「1.1 実数の基本性質」を続けます。 \(\boldsymbol{R}\) の部分集合 \(M\) における任意の元が、ある実数 \(r\) より大きくないとき、\(r\) を \(M\) の 上界という。 上界をもつ集合を上に有界という。 \(\boldsymbol{R}\) の部分集合 \(M\…
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 [引用]----------------------------------------- 縮約された Bianch…
BOOK-OFFで理工系のための 微分積分という本をポイント(税込み\220)で入手しました。通常この手の本は微積分のハウツーであり、ε-δ法はあまり詳しく説明していないことが多いですね。私は電気…
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 [例題]----------------------------------------------- Riemann 曲…
場の理論計算入門の「11章 ファインマン則の厳密でない導き方Ⅱ」の「簡単なファインマン則 」を続けます。 前記事の内容を以前に示した「2次のS - 行列」の例で確認してみましょう。
[問題]-------------------------- \(n\) を自然数とするとき、次を示せ。 …
私がシティポップスと感じた曲を上げていきます。 やまがたすみこ ムーンライトジルバ 1977
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 前記事で求めた式の解説文を引用します。 [引用]------------------…
場の理論計算入門の「11章 ファインマン則の厳密でない導き方Ⅱ」の「簡単なファインマン則 」に入ります。 前回までの計算を図式的に行なう方法が書いてありましたので、ここではそれを紹介します。 こ…
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 任意のテンソル \(T{^{\mu \nu \cdots }}_{\alpha \beta \cdots }\) …
場の理論計算入門の「11章 ファインマン則の厳密でない導き方Ⅱ」の「2次のS-行列 」を続けます。 前記事の(4)式は次のようになるということです。
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 今回は宿題となっている対称性
[問題]---------------------------------------------- 次の定積分を求めよ。 --------------------------------------------------- もちろん不定積分の公式
adieu の awabuki(泡吹) の3つのMV が UP されてましたので、リンクしてみました。 前曲の「背中」はシティポップ感が溢れていたのですが、これはもう少し可愛い感じのアップテンポの曲です。 私として THE FIRST TAKE が一番好きです。 adieu [ awabuki ]
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 [例題]----------------------------------------------- Riemann 曲…
場の理論計算入門の「11章 ファインマン則の厳密でない導き方Ⅱ」の「2次のS-行列 」に入ります。 これまでは \(S^{(1)}\) を計算 → \(S^{(2)}\) を計算 \(B^{*}B\pi\) の相互作用式
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 今回は
「演習問題 10 _ 5 をやってみる(2)」を再掲します。 実際の問題のバーテックスについて見ていきたいと思います。 まず、前回で求めたラグランジアン密度を書いておきます。
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 [例題]----------------------------------------------- 任意の反変…
[問題]---------------------------------------------- 次の定積分を求めよ。 --------------------------------------------------- 一見簡単な問題と思ったのですが、変数変…
私がシティポップスと感じた曲を上げていきます。 Sugar Babe - いつも通り </…
「演習問題 10 _ 5 をやってみる(1)」を再掲します。 演習問題 10 _ 5 をやってみますが、ここは少しづつ進めたいと思います。 今回は問題の提示と、ラグランジアン密度を分析してみます。 …
前記事「曲率(2)」で計算確認を端折っていましたので、これをやり直したいと思います。
「演習問題 10 _ 4 をやってみる」を再掲します。 演習問題 10 _ 4 ですが、\(\mu\) 粒子の崩壊に関するものです。 この「エルミート共役(\(h.c\))」部分は逆反応で、気にしなくて良いということ…
「演習形式で学ぶ一般相対性理論」の「第2章 曲がった時空の幾何学-2.1 Riemann 幾何学-2.1.4 曲率」を続けます。 空間の曲がり=ズレ を定量的に表すため、下図のように 微小に離れた…
「演習問題 10 _ 3 をやってみる」を再掲します。 続けて、演習問題 10 _ 3 をやってみることにします。 ヒグス粒子の崩壊なのですが、さすがにこれは自信が無いです。 [演習問題 10.3]------…
[問題]---------------------------------------------- 次の極限値を求めよ。
今年の節分は2月2日だそうで、民俗学がわかる事典に「6. 節分になぜ、豆をまくのか」という項目があったので、ちょっと抜き書きします。 節分 : 立春の前日。太陽の運行を基準にして4つの季節に分けたときの分け目。 正確には4回ある。立春、立夏、立秋、立冬の前日。 一年の初めとして立春の前日だけ強調。 ⇒ 特別の日として…
「ブログリーダー」を活用して、T_NAKAさんをフォローしませんか?
たまには日本のフォークでも。。 ということで「もう引き返せない」をリンクしました。 いろいろな人がカヴァーしてますが、まず中川イサトさんから、、 もう引き返せない
工業系数学テキストシリーズ 応用数学(第1版) という本をブックオフで¥340で入手しました。執筆者の先生が殆ど高専の教授なので、理論に拘泥せず実用的だと感じました。 さて、表題の「合成積(たたみ込み…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.5 ADM形式」に入ります。 実は別の教科書「基幹…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.4 ガロア群のフォーマルな定義」に入ります。 [定義:方程式のガロア群
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.2 Newton 近似」を続けます。 [例題]----------------------------------------------…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.3 体の自己同型」を続けます。 [例題1]-------------------------------------------…
疲れたので簡単な積分問題をやってお茶を濁します。 問題の中は(1)~(6)までありますが、今週は(1)~(3)まで考えます。(残りは来週) [問題]----------------------------------------------- 次の関数を積分せよ。
この曲もコピーする必要があるのでリンクします。 Bus Stop (Remastered) </if…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.2 Newton 近似」に入ります。 [例題]----------------------------------------------…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.3 体の自己同型」に入ります。 体 \(K\) の自己同型: 1対1…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.1 線形 Einstein 方程式」を続けます。 [例題]-------------------------------------…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.2 写像の概念」を続けます。 [定義:逆写像]---------------------------- \(f:X\to…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.1 線形 Einstein 方程式」に入ります。 その前に「4.4 Einstein 方程式の弱場近似」の…
基礎コース 経済数学 という本をブックオフで入手しました。その第5章が「マクロ経済学」になっています。 また問題をやってみようと思います。 [問題]-------------------------- マク…
この曲もコピーする必要があるのでリンクします。 Christie: Yellow River </i…
この本は BOOKOFF で買って、長らく積読状態でした。なかなか読む気にならなかったのですが、たまたま読みはじめることにしました。 著者の中野信子さんは TV で見かける美人コメンテータとしてお馴染みだと思います。どうも脳科学というのはどの位進展しているのか、ちょっと疑問なところがあります。脳科学者の茂木健一郎さんが「現在の脳科学は…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.2 写像の概念」を続けます。 [定義:単射、1対1の写像]---------…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.3 変分による Einstein 方程式の導出 の 4.3.3 物質場を伴う場合の変分」を続けます。 前記事の結果を再掲しておきます。 …
美術も歴史も得意ではない分野ですが、書店にこの本(入門 日本美術史)が並んでいて、眺めていると、綺麗なので購入しました。 最近、本を読むのが億劫になり、なかなか読書が進まなかったのですが、ちょっと電車で遠出する機会ができたのでまとめて読んでみました。ここでは、簡単な感想などを書いておきます。 著者の山本先生は「…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.2 写像の概念」に入ります。 \(X,Y\):集合 \(X\) のどの要素にも、 \(Y\) の要素が…
標題のおさらいを続けます。 まず、スカラー曲率を求めます。定義は なので、\(g^{\nu \rho } \neq 0\) の部分を考えると、
標題のおさらいを続けます。 今回はリッチテンソルを求めます。 定義は、
標題のおさらいを続けます。 から、
ちょっと脱線ですが、標題のおさらいをしたいと思います。 参考書は「入門 現代の宇宙論」です。 まず、一様等方宇宙の線素は
「インフレーション宇宙(5)」において標題の (9.79)式 の導出が分かっていませんでした。これを再度考えてみました。 まず、空間的に平坦な膨張宇宙の計量は
データサイエンスの必須スキル!データ研磨入門~大学生のためのデータサイエンスシリーズ~
最近はフォークの名曲を聴きなおしていますが、このディランの曲が気になっています。 Bob Dylan - It's All Over Now, Baby Blue (Live at the Newport Folk Festival, 1965)
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 スローロール近似が破れた後は、ポテンシャルの極小値付近で \(\phi\) で振動。 イン…
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 \((9.79)\) 式 \(\ddot{\phi }+3H\dot{\phi }+{V}'(\phi )=0\) が摩擦が働く場合の1次…
神仏習合の歴史展開という論文からいただきました。 (1) 神身離脱説 7世紀初頭から奈良時代にかけて 「神は人間と同じように悩み苦しむ存在であり仏法の力により救われる存在である」という考え方 日本の神は六道の中を輪廻する苦しみから脱していない → 仏教によってその苦しみから脱することができる → 神宮寺(神願寺・…
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 [引用①]------------------------ さらに、運動方程式 \((3.42)\) を空間的に一様な…
「浄土真宗はなぜ日本でいちばん多いのか-仏教宗派の謎」の宗派による葬儀の違い1 - お経(P213~)の内容を表にしてみました。
[問題]----------------------------
この有名曲は最初に誰がレコーディングしたのか?気になって調べてみました。 この人だったようです。 Lead Belly Sings "Goodnight Irene"
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 インフレーションを実現するには → 真空のエネルギーが卓越すれば良い しかし、真空…
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 \((9.68)\) 式を再掲します。
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 [引用①]------------------------ また、一方で空間曲率の宇宙膨張への寄与のスケー…
「浄土真宗はなぜ日本でいちばん多いのか-仏教宗派の謎」。題名を見た印象では「浄土真宗」のことだけ書いてあるように思えますが、内容は副題「仏教宗派の謎」とあるように、日本の仏教史・仏教宗派の解説になっています。 私の親戚には臨済宗の寺院があり、我が家の宗派は臨済宗妙心寺派です。さて仏教における檀家というか在家信者は、浄…
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」に入ります。 実はこの前に「§9.4 ビッグバン宇宙論外観」というのがあるのですが、思うところがあ…
[問題]---------------------------- 次の行列式を計算せよ。