chevron_left

メインカテゴリーを選択しなおす

cancel
T_NAKA
フォロー
住所
東京都
出身
東京都
ブログ村参加

2007/03/21

arrow_drop_down
  • スカラー場のエネルギー・運動量テンソル

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3..4.3 スカラー場」を考えます。 ・スカラー場 スカラー場の作用関数は、ラグラ…

  • 電磁場のエネルギー・運動量テンソル

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3.4.2 電磁場」を考えます。 ・電磁場 \(A_{\mu}\) : 4元ベクトルポテンシ…

  • 粒子系のエネルギー・運動量テンソル(2)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3.4.1 粒子系」を続けます。 前記事から引用すると、

  • 粒子系のエネルギー・運動量テンソル(1)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3.4.1 粒子系」を学習します。 自由粒子の運動方程式は粒子の世界線に沿った時間間…

  • とりあえず先週修了証を貰ったので(122)

    早稲田大学コトづくりDX人材育成コース

  • 風の谷のナウシカ (2024 ver.)

    イメージソング「風の谷のナウシカ」リメイクが配信決定お知らせした安田成美さんの「風の谷のナウシカ」(2024 ver.)がYouTube にUPされていたので、リンクしておきます(いつリンク切れになるか分からないですが)。

  • アインシュタイン方程式(3)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.3 アインシュタイン方程式」を続けます。 「エネルギー・運動量テンソル(1)」から

  • アインシュタイン方程式(2)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.3 アインシュタイン方程式」を続けます。 ・第2項について 結果(アインシュタイン方程式)を知っているので、この第2項は最終的…

  • アインシュタイン方程式(1)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.3 アインシュタイン方程式」をまとめます。 重力場の作用関数:

  • エネルギー・運動量テンソル(3)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.2 エネルギー・運動量テンソル」をまとめを続けます。 「\(T{^{\mu \nu }}_{;\nu }= 0\)」というエネルギー・運動量テンソルの…

  • エネルギー・運動量テンソル(2)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.2 エネルギー・運動量テンソル」をまとめを続けます。 ここでも本筋の証明に必要な関係式をおさらいします。 無限小座標変換 \({x}'…

  • 神道の信仰形態およびその推移の歴史について

    「秘儀の島ー神話づくりの実態ー」(ただし単行本)からの引用です。 [引用]---------------------------------- 神道はふしぎな信仰形態をもっている。ないしは、ふしぎな信仰形態推移の歴史をもっている。一般的に知られているように、それは恐れ慎みの信仰、忌み籠りの信仰であるが、信仰の対象たる神は常在しない。祭りの季節にだけ…

  • アフリカの星のボレロ

    これは以前にも取り上げたのですが、ドイツ映画 「 撃墜王・アフリカの星 Der Stern Von Afrika 」 1957 のテーマ曲です。wikipedia_撃墜王・アフリカの星にあるように、 「この映画が作られた1950年代中期の西ドイツはようやく連邦軍の再創設を実現したばかりで、ナチス・ド…

  • エネルギー・運動量テンソル(1)

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.2 エネルギー・運動量テンソル」をまとめます。 物質場の作用関数も共変性の条件を満たさなければならない → \(\mathcal{L}_{m}\) :…

  • アークを含む回路(4)

    今回はもう一つのケースを考えます ・\(R\tau/L=1\) の場合:

  • アークを含む回路(3)

    前記事の結果を再掲します。 ですが、\((\tau -t)\) のベキ乗の積分なので、肩にかかる数値によって異な…

  • アークを含む回路(2)

    標題の件を続けます。 [引用]-------------------------------------------- 次に図のように \(LR\) 回路に一定電流 \(I=E/R\) が流れている場合、スイッチ \(S\) を開けば、スイッチの接点間にアークを生じて、回路を瞬間的に開くことができない。

  • アークを含む回路(1)

    「基礎 過渡現象」という本を入手したので「第4章 非線形回路」の標題の件について考えます。 [引用]---------…

  • アメリカ先住民の宗教観

    「古代から来た未来人 折口信夫(中沢新一著)」の中に標題について語った箇所を引用します。 [引用:p108 5行目~11行目]------------------------------------------------- 彼らはきわめて高度な自然智の収蔵庫を、つくりあげてきた。そこから、生活の倫理をくみだしてくるような生き方を彼らは長い間続けてきたのだ。アメリカ先住民は…

  • 日本のボレロ?

    wikipedia_ボレロ (ダンス・音楽)(「この記事は不十分」という記述がありますが、)によると、ボレロにはスペイン由来のものと、キューバ由来のものがあるようで、「英語版では両者は名前が同じだけで無関係なものとしている」とのことです。 では、日本ではどのように理解し…

  • 重力場の作用関数

    「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.1 重力場の作用関数」をまとめます。 計量テンソルが「時空の曲がり(=重力場)」を規定。 → 重力理論を定義するには、計量テンソル…

  • 4次元体積について

    4次元体積要素 \( \sqrt{-g}\: d^{4}x\) について考えます。 \(x^{\mu }\to \tilde{x}^{\mu }\) の座標変換で、

  • 測地線方程式(2)

    今回は「基幹講座 物理学 相対論」の測地線方程式に関連する練習問題の一つをやってみます。 [問題]------------------------------------------ \(ds^{2}=g_{\mu \nu }dx^{\mu }dx^{\nu }\) であ…

  • 測地線方程式(1)

    「基幹講座 物理学 相対論」の「第2章 擬リーマン幾何による重力場の記述」の「重力場中での質点の運動と光線の軌跡」をまとめます。 ・重力場がない場合の質点の運動 つまり等速直線運動で、…

  • 球面のリッチテンソルとスカラー曲率

    2次元なので、\(R_{11},\;R_{12}(= R_{21}),\;R_{22}\) の3通りしかないです。 これを一つ一つ計算しましょう。

  • A comprehensive survey of Schwarzschild's original papers: Schwarzschild's trick and Einstein's s(h)tick の Abstract

    A comprehensive survey of Schwarzschild's original papers: Schwarzschild's trick and Einstein's s(h)tick の Abstract を訳してみます。 この論文はイスラエルの University of Haifa の科学史・科学哲学の Gali…

  • 節分なので、「福は内 鬼は外」

    細野さんの「福は内 鬼は外」の2ver.を聞き比べてみましょう。 福は内 鬼は外 Hosono House original ver. </i…

  • 曲率テンソル(5)

    「基幹講座 物理学 相対論」の「第2章 擬リーマン幾何による重力場の記述」の「曲率テンソル」をまとめを続けます。 ・ ビアンキの恒等式 (Bianchi identity)

  • 球面のリーマンテンソル(2)

    2次元の場合は、すでに見たように、唯一の独立な成分として \(R_{1212}\) を採ることが出来るので、球面の場合を計算してみます。 まず、球面の接続(クリストッフェル記号) から ----------------…

arrow_drop_down

ブログリーダー」を活用して、T_NAKAさんをフォローしませんか?

ハンドル名
T_NAKAさん
ブログタイトル
T_NAKAの阿房ブログ
フォロー
T_NAKAの阿房ブログ

にほんブログ村 カテゴリー一覧

商用