前記事の合成積(たたみ込み)を逆ラプラス変換に応用した問題をやってみます。 [問題]-------------------------------- を計算せよ。 ------------…
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3..4.3 スカラー場」を考えます。 ・スカラー場 スカラー場の作用関数は、ラグラ…
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3.4.2 電磁場」を考えます。 ・電磁場 \(A_{\mu}\) : 4元ベクトルポテンシ…
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3.4.1 粒子系」を続けます。 前記事から引用すると、
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.4 様々な物質場のエネルギー・運動量テンソル」の「3.4.1 粒子系」を学習します。 自由粒子の運動方程式は粒子の世界線に沿った時間間…
早稲田大学コトづくりDX人材育成コース
イメージソング「風の谷のナウシカ」リメイクが配信決定お知らせした安田成美さんの「風の谷のナウシカ」(2024 ver.)がYouTube にUPされていたので、リンクしておきます(いつリンク切れになるか分からないですが)。
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.3 アインシュタイン方程式」を続けます。 「エネルギー・運動量テンソル(1)」から
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.3 アインシュタイン方程式」を続けます。 ・第2項について 結果(アインシュタイン方程式)を知っているので、この第2項は最終的…
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.3 アインシュタイン方程式」をまとめます。 重力場の作用関数:
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.2 エネルギー・運動量テンソル」をまとめを続けます。 「\(T{^{\mu \nu }}_{;\nu }= 0\)」というエネルギー・運動量テンソルの…
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.2 エネルギー・運動量テンソル」をまとめを続けます。 ここでも本筋の証明に必要な関係式をおさらいします。 無限小座標変換 \({x}'…
「秘儀の島ー神話づくりの実態ー」(ただし単行本)からの引用です。 [引用]---------------------------------- 神道はふしぎな信仰形態をもっている。ないしは、ふしぎな信仰形態推移の歴史をもっている。一般的に知られているように、それは恐れ慎みの信仰、忌み籠りの信仰であるが、信仰の対象たる神は常在しない。祭りの季節にだけ…
これは以前にも取り上げたのですが、ドイツ映画 「 撃墜王・アフリカの星 Der Stern Von Afrika 」 1957 のテーマ曲です。wikipedia_撃墜王・アフリカの星にあるように、 「この映画が作られた1950年代中期の西ドイツはようやく連邦軍の再創設を実現したばかりで、ナチス・ド…
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.2 エネルギー・運動量テンソル」をまとめます。 物質場の作用関数も共変性の条件を満たさなければならない → \(\mathcal{L}_{m}\) :…
今回はもう一つのケースを考えます ・\(R\tau/L=1\) の場合:
前記事の結果を再掲します。 ですが、\((\tau -t)\) のベキ乗の積分なので、肩にかかる数値によって異な…
標題の件を続けます。 [引用]-------------------------------------------- 次に図のように \(LR\) 回路に一定電流 \(I=E/R\) が流れている場合、スイッチ \(S\) を開けば、スイッチの接点間にアークを生じて、回路を瞬間的に開くことができない。
「基礎 過渡現象」という本を入手したので「第4章 非線形回路」の標題の件について考えます。 [引用]---------…
「古代から来た未来人 折口信夫(中沢新一著)」の中に標題について語った箇所を引用します。 [引用:p108 5行目~11行目]------------------------------------------------- 彼らはきわめて高度な自然智の収蔵庫を、つくりあげてきた。そこから、生活の倫理をくみだしてくるような生き方を彼らは長い間続けてきたのだ。アメリカ先住民は…
wikipedia_ボレロ (ダンス・音楽)(「この記事は不十分」という記述がありますが、)によると、ボレロにはスペイン由来のものと、キューバ由来のものがあるようで、「英語版では両者は名前が同じだけで無関係なものとしている」とのことです。 では、日本ではどのように理解し…
「基幹講座 物理学 相対論」の「第3章 一般相対論」の「§3.1 重力場の作用関数」をまとめます。 計量テンソルが「時空の曲がり(=重力場)」を規定。 → 重力理論を定義するには、計量テンソル…
4次元体積要素 \( \sqrt{-g}\: d^{4}x\) について考えます。 \(x^{\mu }\to \tilde{x}^{\mu }\) の座標変換で、
今回は「基幹講座 物理学 相対論」の測地線方程式に関連する練習問題の一つをやってみます。 [問題]------------------------------------------ \(ds^{2}=g_{\mu \nu }dx^{\mu }dx^{\nu }\) であ…
「基幹講座 物理学 相対論」の「第2章 擬リーマン幾何による重力場の記述」の「重力場中での質点の運動と光線の軌跡」をまとめます。 ・重力場がない場合の質点の運動 つまり等速直線運動で、…
2次元なので、\(R_{11},\;R_{12}(= R_{21}),\;R_{22}\) の3通りしかないです。 これを一つ一つ計算しましょう。
A comprehensive survey of Schwarzschild's original papers: Schwarzschild's trick and Einstein's s(h)tick の Abstract を訳してみます。 この論文はイスラエルの University of Haifa の科学史・科学哲学の Gali…
細野さんの「福は内 鬼は外」の2ver.を聞き比べてみましょう。 福は内 鬼は外 Hosono House original ver. </i…
「基幹講座 物理学 相対論」の「第2章 擬リーマン幾何による重力場の記述」の「曲率テンソル」をまとめを続けます。 ・ ビアンキの恒等式 (Bianchi identity)
2次元の場合は、すでに見たように、唯一の独立な成分として \(R_{1212}\) を採ることが出来るので、球面の場合を計算してみます。 まず、球面の接続(クリストッフェル記号) から ----------------…
「ブログリーダー」を活用して、T_NAKAさんをフォローしませんか?
前記事の合成積(たたみ込み)を逆ラプラス変換に応用した問題をやってみます。 [問題]-------------------------------- を計算せよ。 ------------…
たまには日本のフォークでも。。 ということで「もう引き返せない」をリンクしました。 いろいろな人がカヴァーしてますが、まず中川イサトさんから、、 もう引き返せない
工業系数学テキストシリーズ 応用数学(第1版) という本をブックオフで¥340で入手しました。執筆者の先生が殆ど高専の教授なので、理論に拘泥せず実用的だと感じました。 さて、表題の「合成積(たたみ込み…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.5 ADM形式」に入ります。 実は別の教科書「基幹…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.4 ガロア群のフォーマルな定義」に入ります。 [定義:方程式のガロア群
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.2 Newton 近似」を続けます。 [例題]----------------------------------------------…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.3 体の自己同型」を続けます。 [例題1]-------------------------------------------…
疲れたので簡単な積分問題をやってお茶を濁します。 問題の中は(1)~(6)までありますが、今週は(1)~(3)まで考えます。(残りは来週) [問題]----------------------------------------------- 次の関数を積分せよ。
この曲もコピーする必要があるのでリンクします。 Bus Stop (Remastered) </if…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.2 Newton 近似」に入ります。 [例題]----------------------------------------------…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.3 体の自己同型」に入ります。 体 \(K\) の自己同型: 1対1…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.1 線形 Einstein 方程式」を続けます。 [例題]-------------------------------------…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.2 写像の概念」を続けます。 [定義:逆写像]---------------------------- \(f:X\to…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.4 Einstein 方程式の弱場近似の 4.4.1 線形 Einstein 方程式」に入ります。 その前に「4.4 Einstein 方程式の弱場近似」の…
基礎コース 経済数学 という本をブックオフで入手しました。その第5章が「マクロ経済学」になっています。 また問題をやってみようと思います。 [問題]-------------------------- マク…
この曲もコピーする必要があるのでリンクします。 Christie: Yellow River </i…
この本は BOOKOFF で買って、長らく積読状態でした。なかなか読む気にならなかったのですが、たまたま読みはじめることにしました。 著者の中野信子さんは TV で見かける美人コメンテータとしてお馴染みだと思います。どうも脳科学というのはどの位進展しているのか、ちょっと疑問なところがあります。脳科学者の茂木健一郎さんが「現在の脳科学は…
「ガロア理論 12 講_概念と直観でとらえる現代数学入門」の「第3章 方程式のガロア群」の「2 方程式のガロア群」の「2.2 写像の概念」を続けます。 [定義:単射、1対1の写像]---------…
「演習形式で学ぶ一般相対性理論」の「第4章 一般相対性理論-4.3 変分による Einstein 方程式の導出 の 4.3.3 物質場を伴う場合の変分」を続けます。 前記事の結果を再掲しておきます。 …
美術も歴史も得意ではない分野ですが、書店にこの本(入門 日本美術史)が並んでいて、眺めていると、綺麗なので購入しました。 最近、本を読むのが億劫になり、なかなか読書が進まなかったのですが、ちょっと電車で遠出する機会ができたのでまとめて読んでみました。ここでは、簡単な感想などを書いておきます。 著者の山本先生は「…
[問題]---------------------------- (1) (2)
楽譜を見つけたので、この曲を Musescore で演奏させてみました。 Night_and_Day.mp3 一応、御本家です。 Night And Day - Cole Porter
標題のおさらいを続けます。 まず、スカラー曲率を求めます。定義は なので、\(g^{\nu \rho } \neq 0\) の部分を考えると、
標題のおさらいを続けます。 今回はリッチテンソルを求めます。 定義は、
標題のおさらいを続けます。 から、
ちょっと脱線ですが、標題のおさらいをしたいと思います。 参考書は「入門 現代の宇宙論」です。 まず、一様等方宇宙の線素は
「インフレーション宇宙(5)」において標題の (9.79)式 の導出が分かっていませんでした。これを再度考えてみました。 まず、空間的に平坦な膨張宇宙の計量は
データサイエンスの必須スキル!データ研磨入門~大学生のためのデータサイエンスシリーズ~
最近はフォークの名曲を聴きなおしていますが、このディランの曲が気になっています。 Bob Dylan - It's All Over Now, Baby Blue (Live at the Newport Folk Festival, 1965)
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 スローロール近似が破れた後は、ポテンシャルの極小値付近で \(\phi\) で振動。 イン…
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 \((9.79)\) 式 \(\ddot{\phi }+3H\dot{\phi }+{V}'(\phi )=0\) が摩擦が働く場合の1次…
神仏習合の歴史展開という論文からいただきました。 (1) 神身離脱説 7世紀初頭から奈良時代にかけて 「神は人間と同じように悩み苦しむ存在であり仏法の力により救われる存在である」という考え方 日本の神は六道の中を輪廻する苦しみから脱していない → 仏教によってその苦しみから脱することができる → 神宮寺(神願寺・…
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 [引用①]------------------------ さらに、運動方程式 \((3.42)\) を空間的に一様な…
「浄土真宗はなぜ日本でいちばん多いのか-仏教宗派の謎」の宗派による葬儀の違い1 - お経(P213~)の内容を表にしてみました。
[問題]----------------------------
この有名曲は最初に誰がレコーディングしたのか?気になって調べてみました。 この人だったようです。 Lead Belly Sings "Goodnight Irene"
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 インフレーションを実現するには → 真空のエネルギーが卓越すれば良い しかし、真空…
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 \((9.68)\) 式を再掲します。
「基幹講座 物理学 相対論」の「第9章 相対論的宇宙モデル」の「§9.5 インフレーション宇宙」を続けます。 [引用①]------------------------ また、一方で空間曲率の宇宙膨張への寄与のスケー…
「浄土真宗はなぜ日本でいちばん多いのか-仏教宗派の謎」。題名を見た印象では「浄土真宗」のことだけ書いてあるように思えますが、内容は副題「仏教宗派の謎」とあるように、日本の仏教史・仏教宗派の解説になっています。 私の親戚には臨済宗の寺院があり、我が家の宗派は臨済宗妙心寺派です。さて仏教における檀家というか在家信者は、浄…