exoファイルを使えば、立ち絵の設定をテンプレ化して何度でも使い回せる。キャラごと・表情ごとのexoパターンを作っておけば、配置も口パクも一瞬。拡張編集にドラッグ&ドロップするだけで、作業時間が爆速短縮。
シミュレーションで実物を扱わなくても仕事ができる環境を目指す。つまり家に引きこもって外に出なくてもOKな世界。
フーリエ解析学は「フーリエ級数、係数」と「フーリエ変換、逆フーリエ変換」に分けられる。 「フーリエ級数、係数」も実数フーリエと複素フーリエに分けらえる。 無限級数について説明。 波の合成について説明。 単なる関数の足し算になる。
MATLAB,Python,Scilab,Julia比較 第5章 その6【フーリエ級数⑤】
フーリエ級数までの説明は完了。 いつもなら、ここでプログラム化の話になるの段が、フーリエ級数だけでは波の合成以上の話ができない。 よって、フーリエ係数の話の後に、フーリエ級数含めてプログラム化予定。
MATLAB,Python,Scilab,Julia比較 第5章 その5【フーリエ級数④】
フーリエ級数について説明。 sin関数だけでなく、cos関数も使用する。 a0/2はバイアスを想定した係数。 2分の1は係数算出時にキレイになるため。 理由は後日。
MATLAB,Python,Scilab,Julia比較 第5章 その4【フーリエ級数③】
波の合成について説明。 単なる関数の足し算になる。 フーリエ級数に話を繋げるならば、三角関数の足し算と思えばOK。
MATLAB,Python,Scilab,Julia比較 第5章 その3【フーリエ級数②】
無限級数について説明。 無限級数自体は無限に足していくだけの概念。 無限級数の代表格にテイラー級数がある。
MATLAB,Python,Scilab,Julia比較 第5章 その2【フーリエ級数①】
フーリエ解析学は「フーリエ級数、係数」と「フーリエ変換、逆フーリエ変換」に分けられる。 「フーリエ級数、係数」も実数フーリエと複素フーリエに分けらえる。 まずはフーリエ級数に至る道を提示。
業務でフーリエ解析学に絡むところがやってるのでこれを第5章はフーリエ解析学をテーマとする 途中、フーリエと関係ない部分でもプログラム化して確認するなどをして理解しやすい状態で進める予定。
MATLAB,Python,Scilab,Julia比較 第5章 その1【導入編】
業務でフーリエ解析学に絡むところがやってるのでこれを第5章はフーリエ解析学をテーマとする 途中、フーリエと関係ない部分でもプログラム化して確認するなどをして理解しやすい状態で進める予定。
【油断すると危険】GUGA 生成AIパスポート試験【複数選択式もある】
生成AIパスポート試験の受験記。 GUGAからの禁止事項の都合、開示できる情報には限りがある。 テキスト、問題集で対策が一般的。 自作問題作ってパワーアップ。(自作問題集は公開してます。) 試しに禁止事項を破れるか、検討だけしてみた。
【入門】最適化アルゴリズム(Adamでの分類結果)【数値計算】
Adamだけで出てくる分類結果を確認。 四角形で分類する理想的な形状。 この分類結果になる場合は、誤差関数の値が一気に跳ね上がる時。 これにより大域最適解を引き当てやすくなる。
ニューラルネットワークの最適化アルゴリズムAdamをJuliaにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
ニューラルネットワークの最適化アルゴリズムAdamをScilabにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
ニューラルネットワークの最適化アルゴリズムAdamをPythonにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
ニューラルネットワークの最適化アルゴリズムAdamをMATLABにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
MATLAB,Python,Scilab,Julia比較 第4章【バックナンバー】
はじめに MATLAB,Python,Scilab,Julia比較するシリーズの第4章。 第3章では画像処理、座標変換の話がメインだった。 第4章は分類問題関連の話がメインとなる。基本的には以下の流れとなる。 形式ニューロン 決定境界線の安
MATLAB,Python,Scilab,Julia比較 第4章 その114【本章のまとめ】
分類問題を扱って第4章終了。 最も原始的なニューラルネットワークをやったことでディープラーニングの基礎部分は把握できたかもしれない。 次の章はこれから考える。
MATLAB,Python,Scilab,Julia比較 第4章 その113【最適化アルゴリズム⑫】
Adamだけで出てくる分類結果を確認。 四角形で分類する理想的な形状。 この分類結果になる場合は、誤差関数の値が一気に跳ね上がる時。 これにより大域最適解を引き当てやすくなる。
MATLAB,Python,Scilab,Julia比較 第4章 その112【最適化アルゴリズム⑪】
ニューラルネットワークの最適化アルゴリズムAdamをJuliaにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
MATLAB,Python,Scilab,Julia比較 第4章 その111【最適化アルゴリズム⑩】
ニューラルネットワークの最適化アルゴリズムAdamをScilabにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
MATLAB,Python,Scilab,Julia比較 第4章 その110【最適化アルゴリズム⑨】
ニューラルネットワークの最適化アルゴリズムAdamをPythonにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
MATLAB,Python,Scilab,Julia比較 第4章 その109【最適化アルゴリズム⑧】
ニューラルネットワークの最適化アルゴリズムAdamをMATLABにて確認。 学習率を0.001にしている都合、収束までは時間がかかる。 勾配降下法、モーメンタムでは見れなかった分類パターンが拾えた。
各最適化アルゴリズムの依存関係を記載。 1次の勾配で勢いをつけて、2次の勾配で抑制するというのが全体を通しての共通点。 Adamの更新式を実現するためのプログラムフローを記載。 学習率は0.001とかなり小さめの値に設定。 これにより収束は遅くなる。 かわりに特殊な最適解が得られるのでそれを確認する。
AdaDeltaについて説明。 RMSpropの拡張版に当たる。 最適化アルゴリズムAdamについて説明。 モーメンタムとRMSpropの合わせ技。 1次の勾配と、2次の勾配の指数移動平均を使用する。
もう一個試す予定の最適化アルゴリズムAdamへ至る系譜を説明予定。 AdaGradについて説明。 更新式をモーメンタムと比較。 RMSpropについて説明。 AdaGradの完了版であるため、AdaGradと更新式を比較。
MATLAB,Python,Scilab,Julia比較 第4章 その108【最適化アルゴリズム⑦】
Adamの更新式を実現するためのプログラムフローを記載。 モーメンタムの部分をAdamに差し替えただけ。 学習率は0.001とかなり小さめの値に設定。 これにより収束は遅くなる。 かわりに特殊な最適解が得られるのでそれを確認する。
MATLAB,Python,Scilab,Julia比較 第4章 その107【最適化アルゴリズム⑥】
各最適化アルゴリズムの依存関係を記載。 1次の勾配で勢いをつけて、2次の勾配で抑制するというのが全体を通しての共通点。 Adamが1次の勾配と2次の勾配を合わせたアルゴリズムとなる。
MATLAB,Python,Scilab,Julia比較 第4章 その106【最適化アルゴリズム⑤】
最適化アルゴリズムAdamについて説明。 モーメンタムとRMSpropの合わせ技。 1次の勾配と、2次の勾配の指数移動平均を使用する。
MATLAB,Python,Scilab,Julia比較 第4章 その105【最適化アルゴリズム④】
AdaDeltaについて説明。 RMSpropの拡張版に当たる。 学習率というハイパーパラメータ無しで動作する。 最終的な学習率は1近傍になるため振動しやすいらしい。
MATLAB,Python,Scilab,Julia比較 第4章 その104【最適化アルゴリズム③】
RMSpropについて説明。 AdaGradの完了版であるため、AdaGradと更新式を比較。 AdaGradでは2次の勾配の累積だったものが、2次の勾配の指数移動平均に。 これにより、極小値近辺やプラトーになっても更新を続けられる。
MATLAB,Python,Scilab,Julia比較 第4章 その103【最適化アルゴリズム②】
AdaGradについて説明。 更新式をモーメンタムと比較。 更新幅は、最初は大きく、徐々に小さくなり、最終的には学習が進まなくなる欠点を抱えている。
MATLAB,Python,Scilab,Julia比較 第4章 その102【最適化アルゴリズム①】
もう一個試す予定の最適化アルゴリズムへ至る系譜を説明予定。 プログラム化して試すのはAdamだが、それに至るアルゴリズムを数式レベルで確認。 Adam以降の最適化アルゴリズムもあるが、基本はAdamベースでクリッピングが入ってる感じ。
「ブログリーダー」を活用して、KEIさんをフォローしませんか?
exoファイルを使えば、立ち絵の設定をテンプレ化して何度でも使い回せる。キャラごと・表情ごとのexoパターンを作っておけば、配置も口パクも一瞬。拡張編集にドラッグ&ドロップするだけで、作業時間が爆速短縮。
G検定まとめ記事はこちらはじめに結構昔にG検定向けの動画で、「JDLAジェネラリスト検定(G検定)さっくり対策(究極カンペの作り方)カンペを見なくても問題が解ける自分の作り方。」というのを公開しているのだが、これに対しての問い合わせがちょく...
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
画像認識の全体像を因果関係図で整理し、AlexNetを起点に各モデルの進化をたどる。一般物体認識から物体検出・セグメンテーション・姿勢推定まで、各カテゴリの代表モデルと技術を解説。モデル同士の構造的なつながりや技術的背景を踏まえ、因果関係をもとに体系的に理解を深めていく。
究極カンペの作り方についての問い合わせが増えている。G検定の評判を確認し、ネガティブな意見を問題提起として捉える。勉強のステージを定義し、語彙力と因果関係の把握が重要であることを説明。
フーリエ変換には角周波数を扱うものと周波数を扱うものがある。角周波数と周波数の間には角度と1回転という差があるのみ。よって、周波数に2πをかければ角周波数となる。
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
立ち絵の配置: PSDファイルをAviUtlに配置し、画面サイズやフレームレートを設定。のっぺらぼう化: 目と口を消して、アニメーション効果を追加。アニメーション効果: 目パチと口パクの設定を行い、リップシンクを調整。
フーリエ変換を定義。フーリエの積分公式の一部を抜き出す。逆フーリエ変換を定義。フーリエの積分公式にフーリエ変換を代入するだけ。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。区分求積法とリーマン積分について。フーリエの積分公式を導出した。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。さらにそこに加えて、AivisSpeechのアイコン画像を...
PSDToolKitプラグインの導入の仕方を説明。PSDファイルを探してGIMPで内容を確認。GIMPで瞬き用、口パク用のレイヤー編集。
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
区分求積法とリーマン積分について。離散と連続の分け目。フーリエの積分公式を導出した。演算したはずなのに変化しない。つまり変換、逆変換が成立することを示している。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。よって、一般的な表現に書き換える必要がある。
角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。ω=nπ/Lを使用して変換するだけ。これにより少し数式がシンプルになった。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。ほぼ独自に作成したが、Anneliの画像自体はAivisS...
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。変換を想定した式に変換。複素指数関数との積と積分、総和を経由すると元に関数に戻るというイメージが重要。
AviUtlのセットアップと拡張編集Pluginの導入を行った。mp4ファイルの入力と出力の方法を説明。アニメーションgifの対応方法を説明。
各最適化アルゴリズムの依存関係を記載。 1次の勾配で勢いをつけて、2次の勾配で抑制するというのが全体を通しての共通点。 Adamが1次の勾配と2次の勾配を合わせたアルゴリズムとなる。
最適化アルゴリズムAdamについて説明。 モーメンタムとRMSpropの合わせ技。 1次の勾配と、2次の勾配の指数移動平均を使用する。
AdaDeltaについて説明。 RMSpropの拡張版に当たる。 学習率というハイパーパラメータ無しで動作する。 最終的な学習率は1近傍になるため振動しやすいらしい。
RMSpropについて説明。 AdaGradの完了版であるため、AdaGradと更新式を比較。 AdaGradでは2次の勾配の累積だったものが、2次の勾配の指数移動平均に。 これにより、極小値近辺やプラトーになっても更新を続けられる。
AdaGradについて説明。 更新式をモーメンタムと比較。 更新幅は、最初は大きく、徐々に小さくなり、最終的には学習が進まなくなる欠点を抱えている。
もう一個試す予定の最適化アルゴリズムへ至る系譜を説明予定。 プログラム化して試すのはAdamだが、それに至るアルゴリズムを数式レベルで確認。 Adam以降の最適化アルゴリズムもあるが、基本はAdamベースでクリッピングが入ってる感じ。
最適化アルゴリズムを通常の勾配降下法からモーメンタムに変えた際の差分を確認。 モーメンタムの方が学習の収束が早い。 勾配降下法で500エポックのところ100エポック。 モーメンタムの場合、初期のパラメータ移動が大き目。 これにより、大域最適化を見つける可能性が高くなる。
最適化アルゴリズム モーメンタムを用いて分類の学習をJuliaで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をPythonで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をMATLABで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズムを通常の勾配降下法からモーメンタムに変えた際の差分を確認。 モーメンタムの方が学習の収束が早い。 勾配降下法で500エポックのところ100エポック。 モーメンタムの場合、初期のパラメータ移動が大き目。 これにより、大域最適化を見つける可能性が高くなる。
最適化アルゴリズム モーメンタムを用いて分類の学習をJuliaで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をScilabで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をPythonで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
最適化アルゴリズム モーメンタムを用いて分類の学習をMATLABで実現。 問題無く動作。 学習の収束が通常の勾配降下法よりも比較的早い。
モーメンタムを確認するプログラムの方針を確認。 以前の勾配降下法のプログラムをベースにする。 隠れ層のユニット数は4。 プログラムのフローを確認。 モーメンタム項とパラメータ更新が基本的な差分となる。
モーメンタムの更新式について確認。 指数移動平均を利用して直近の値を重視する。 モーメンタムの動作イメージについて確認。 最初は大きく更新して、最適解が近いと小さく更新。 勾配降下法で言うところの学習率が可変と同義な動きになる。
勾配降下法の更新式を確認。 勾配降下法の動作イメージを確認。 学習率が大きい場合と小さい場合で挙動が変わる。 ちょうど良い学習率を人間の手で探す。 これにより、一般的なパラメータとは異なるハイパーパラメータというカテゴリになる。