背理法はいかにも数学らしい証明法です(どこか釈然としないながらも渋々ナットクしている向きもアリ).ただし背理法の核心部分を浅読みor誤解しているケースも散見できます.背理法がシックリこない主因■ 犯人捜しの場合,「容疑者がA, Bの2人いる.Aが犯人でないと証明された.よって,自動的にBが犯人である」とは断定できませんね.cや毒蜘蛛が真犯人かもしれませんから.■ ところが,論理(数学)の世界では「xは,Aであるか非Aであるかのいずれか一
昨今,アクティブラーニングなど指導形態に関する論議が盛んです.その流れに竿を差すようですが,もっと教材自体への興味関心を持つべしと考えます.この視点に立ち,小中高「算数・数学を貫く教材観」をベースに数学の話題を提供してまいります.
学校と教育行政に「49:51」の割合で勤務し,その後大学の教員養成にもチョロリと関わっています(学生には迷惑かも).教具作りのため100円ショップ通いは欠かせません.本サイトの主テーマは,解答説明や授業形態論ではなく,教材とその展開についてですので,はっきり言ってクラシックで地味な内容でしょう.が,何か共鳴しあうことができれば幸いです.よろしく! ※あ北→あきた→秋田
背理法はいかにも数学らしい証明法です(どこか釈然としないながらも渋々ナットクしている向きもアリ).ただし背理法の核心部分を浅読みor誤解しているケースも散見できます.背理法がシックリこない主因■ 犯人捜しの場合,「容疑者がA, Bの2人いる.Aが犯人でないと証明された.よって,自動的にBが犯人である」とは断定できませんね.cや毒蜘蛛が真犯人かもしれませんから.■ ところが,論理(数学)の世界では「xは,Aであるか非Aであるかのいずれか一
数を学ぶはずの"数学"ですが,学習者が上級学校に進むに比例して,数が減り文字が増えます(ある代数の専門書はほとんどのページが文字で占領されておりショックを受けた記憶が).■ 中高の教科書から文字式を2例取りあげ,無味乾燥な文字式に「ちょっと味」を施します.a²-b²=(a+b)(a-b)■ 代表的な因数分解公式で学習者には抵抗感なく受け入れられていますが,意味を付加しましょう.チョットした御利益ですが.Q1 S=103²ー97² を計算しなさ
数学が分かるヒトからすれば「何でこれが分からないの?」という例に「少なくとも~」を含む記述や問があります.例:3割バッターが3回打席に立ったとき,少なくとも1安打する確率を求めなさい.■ 「少なくとも」を含んだリード文を見ると,思考が停止or頭がグルグル回る・・・というケースも散見できます.その際「これは読解力の差.数学以前の問題だ」とフンガイしても改善には1ミリも前進しません.日常生活と「少なくとも」■ 日常生活の中で「
全国学力学習状況調査問題と大学共通テスト問題(以下,学テ等)を拝見すると,出題者(国)⇒ 算数・数学リーダー への強烈なメッセージを感じます.■ すなわち「この問に応じた授業展開をしてね・するべし!」という方向明示です.※ 昨今,学テ等では1問が数ページにも渡る「大河ドラマ的長編」形式が定着した観がありますが,これについては後日テーマにする予定で,本blogでは小問をメインに話題にしました.「指導カイゼン」に絞る
空間ベクトルa,bに対して,外積:a×bとは次の性質をもつベクトルのことです.①a,bと垂直,②a×bの大きさ(長さ)はa,bのなす平行四辺形の面積を表す■ 外積をイメージしようとするとき,①はともかく,②で戸惑うヒトおりませんか? ■ 定義 a×b = a b sinθ で,右辺は図の平行四辺形の面積を示しています.ただ,ベクトルの長さOP=面積 とは??という(一瞬抱く)違和感です.■ 面積や長さ,時間等々の量を数量化したものをス
「算数・数学 ≓ 計算 」①と理解しているヒトはかなりおります.もちろん①を全否定はしませんが,即,計算に走る・ダッシュする姿には大いなる疑問を感じます.算数・数学の学びを単に「公式に当てはめ○をもらうこと」にミスリードしているのではないか?という懸念です. ⇒ 一つのカイゼン策が「計算前の見当付け」です.気になる授業光景から■ 授業や報告等でしばしば見かける光景(1) 「25.3÷2.3 を計算しなさい」<展開例>① 「まず5分間,自分だけでやっ
2進法はコンピューターと"一心同体"の記数法であり,10進法は日常生活に不可欠な記数法です.その点,3進法は存在感が薄いのですが,天びんと絡ませると教材としておもしろい結果が出てきます.3進法の例■ ある自然数xが3進法で20212(3) と表されているとします.※ここで,20212を二万二百十二 とは読まず,に/ゼロ/に/いち/に が普通の読み方■ 20212(3)を10進法で示すとx=2・3⁴+0・3³+2・3²+1・3¹+2 &nbs
「n個の部屋に(n+1)以上の客を泊めようとすると,相部屋(2人以上の客が入る)が必ずできる」という体験を基にした原理が"部屋割り論法"ですね.引き出し論法,鳩ノ巣原理とも言います.■ ネーミングからしてもわかりやすい原理であり,学習者のナットク感は高いです.しかし実際の適用場面となるとシックリ感は今一つということもありそうです.その原因を探ってみます.部屋割り論法 は相部屋の"存在だけ"を示す原理■ 部屋割り論法は,相部屋が何号室であるかは
有理数1/7 はある意味で分数の「代表」です.a=1/7にまつわる問をいくつか挙げます.Q1 aを小数に直しなさい Q2 b=0.142857…を分数に直しなさい Q3 aが循環小数となる理由を述べなさい Q4 その他(「a=1/7のイメージを描きなさい」)Q1:割算が延々と続きます.Q2:巧妙な式変形で求められますが,無限に続く数のかけ算や引き算をするので数学的には疑問符が付きます.正式には無限等比級数の和の公式(高数Ⅲ)を用います. Q4:かつて熊本の小6
点と直線の距離公式(以下,公式)は,受験数学では必須ツールですが,根号・絶対値付きの分数形式でゴッツいイメージです.特に,突然√a²+b² の登場に抵抗感がありそうです.定理 点(x₀,y₀)と直線ax+by+c=0 との距離d:\[d=\frac{ ax₀+by₀+c }{\sqrt{a²+b²}}\]点と直線の距離公式と学習者との「距離」■ 公式への「苦情」あれこれです① 数がなく文字だらけ ② 証明が
「怨嗟(エンサ)」は少しオーバーでした.しかし算数・数学の解説で,どこかあいまいさ・モヤモヤ感が残り,積もり積もってエンサとなることはあり得ます.実際「問題を解いていくとそのうちワカルよ」などと根拠の薄い弁解しながら先へ進む授業光景も散見されます.■ 先日,twitter上で見つけた一例です.関数y=f(x)のグラフをx軸方向にp平行移動したグラフの式は,y=f(x-p)となります.y軸方向も同様.⇒ 何で,x-p となるのでしょうか?x
\[例 \frac{3}{4}÷\frac{5}{8}=\frac{3}{4}×\frac{8}{5}\]2分数の割算は「計算はできるにしてもワケはわからない」典型例かも知れませんね.■ 過日,本blogで1当たりの大きさ…1って何?をupしたところ,√6さんよりコメントを頂戴いたしました.後述しますように2分数割算の計算ルール ⇔ 1当たりの大きさであり「本質」が同じですので,ここでは√6さん案をメインに話題を提供します.Q
30g+50g=80g, 30cm+50cm=80cm はよしとして,30°Cの水+50°Cの水=80°Cの水 は成り立ちません.その「ワケ」理解はいかがでしょうか.学生も含めてかなり怪しい状況です.■ 教材学研究第24巻「教員養成系大学生の量概念の実態と温度概念形成に向けた指導方法」(帝京科学大学 小池他,上越教育大学 高津戸)を基に話題を提供します.量は大別して2タイプ■ 日常よく目にする量についてですがⅠ:長さ,重さ,広さ etcⅡ:速さ,濃度,
立方体の回転もいろいろですが,中心を通る対角線を軸にして1回転してできる立体を話題にします.立方体という見慣れたモノを用いてはいますが,ケッコウな内容で手強いです.■ 写真では一番上の頂点で細い糸がかすかに見えておりますが,立方体がぶら下がっています.この状態で立方体をクルクルと回すわけです.■ 全体像はさておき,部分的に見ていきましょう(←"落とせそうな"ところから攻める!数学的思考の一つ).■ 図で,上の頂点Aに集まる3本の辺で四面体
ともなって変わる2つの量 ⇒ 即,比例! こんなパターンがスッカリ定着し,算数・数学リーダーは「早く比例計算に導きたい」ようにさえ見えます.計算の前に「観察・思考」があるべきです.■ 水そうに1㍑のバケツでくり返して水を入れたときの深さが1回:4cm, 2回:8cm, 3回:12cm…となった.このとき,・・・■ 上記のような例ならば,典型的な比例関係であり,計算式もすぐ求められます.日常生活に見る比例■ 図は
学ぶ上で「物理にあって数学に欠けていること」ってありますよね(もちろん,その逆も).例を挙げてその「欠く点」のカイゼンを図りたいと思います.典型的な問題2例A(物理) 地上19.6mのところから,水平方向に初速度2.0mで小石を投げた.地面に落下するまでの水平距離と着地に要する時間を求めよ.ただし,空気抵抗は無視するとする.B(数学) 図のように円筒形タンクに水が満たされている.底に直径5cmの穴から水が
最近は新聞が”遠く”なりましたね.ある小学2年生クラスで「明日,授業で使うから,おうちから新聞紙1枚持ってきて」と話したところ,aさん「センセ,新聞紙ってなぁ~に?」!この寒空光景はさておき,1紙面に約10000字は印刷できそうです(画像,宣伝等なしで).Q1 紙面上,相手が任意に決めた1文字を当てたいときの最小質問回数を求めてください.ただし,1問に対して相手は{yes, no}で答える というルールにしたがうとします.まず基本姿
全国規模のマークシート方式テストが本格実施されて約半世紀近くなりました.今では保護者はもちろん,先生もマークシート世代です.いまさらですが,染み付いた「マーク」を話題にします.「マーク」をざっとおさらいする■ 加熱する大学入試の改善として1979(昭和54)年に共通一次テストがマークシート方式(以下,マーク式)で実施されました.背景には,大学入試について,①合否が1回だけのテストで決定していること,②範囲外からの出題や難問・奇問の出題の指摘 等の要因がありまし
「算数つまずき」の一つ.まず1(単位量)がわかりにくい.自然数の出だしの数なのですが,扱いには苦労します.■ 代表的な問があります.Q1 $\frac{3}{4}m²の壁を\frac{5}{8}dl で塗れるペンキがあります.$$このペンキ1dlで何m²塗れますか.$A1 面積と使用するペンキ量は比例すると考えて,図のように比例式を立てると 面積 x=6/5 (m²) と求まります.が,正答率はあまりよ
最近は"こだわる"ヒトがめっきり減りました(数学に限らない?)."こだわりビト"は絶滅危惧種かも.学び合いする際,貴重な存在になり得るのですが.■ こだわること=要領が悪い の等式が成り立ちそうな空気を感じます.職場はもちろん,学校社会(特に授業)においてです.背景の一つにマークシート式テストの浸透があると考えます.マーク式が本格導入されて約半世紀.マーク式回答は時間との闘いという側面が強く,その際「こだわり」は障害なのでしょう.こだわり
A大学教育系学部の学生たちが出前授業として高校で数学を担当(復習)しました.その一場面からの話題提供です.多少脚色をしていますが,本テーマの顕在化のためですのでお許しください.最初の「問いかけ」が流れ全体を左右します■ 以下,担当学生Tさんの出だしの発言です.① では突然ですが,三角形ABCをノートに描いてください.② 描いた? では,周りの皆さんの三角形と見比べてみて.③ ハイ,協力ありがとう.どう?そうですね.〇さんがつぶ
サイズ的にはムリなのに四面体が通過できる不思議な現象.10数年前「数学セミナー」でとり挙げられました.証明もさることながら,不思議感を味わいたく,ケッコウ精密な教具を作成しました(動画付).証明の概略■ 数学セミナーによる解説を基に,補足を加えながら論を進めます.正三角形の壁穴をS,正四面体に平行光線を照射したときにできる影(正射影)をTとします.このとき正四面体が正三角形を通過できる ⇔ TがSに含まれるが成り立ちますね.
マーク式テスト導入以来,約半世紀になります.その分,記述式答案の扱いが気になります.答案は「相手(採点者)のためにある」・・・これが原則です.・・・・・・・・・・・・・・・・・・・・・・・・記述式答案の「命」はその論理展開にあり p ⇒ q根拠pを示して結論q … この積み重ねが答案です・・・・・・・・・・・・・・・・・・・・・・・・■ 図は最近目にした「気になる」答案例です(ぼかしています).採点者の視点で答案
極限値ですが,計算は難しくありません.ただ「計算できるけど.知らんけど」という向きが多いのでは.■ 教科書における極限値定義はおおよそ次のようです.極限値定義の押さえどころ:3つ■ この例をみると,実にカンタンで,要するに,xに3を代入すればよいのだ!となりますね.■ 結果的にはそれでokなのですが,定義を甘くみてはいけません.■ 定義のpointは3つです.① xはaにいくらでも近づく.しかし,aには到達しない⇒ xが
1~1000まで書き続けた小1生(改訂版)…学習の進んだ子ども(その3)
算数・数学教育に関わって「学習の進んだ子ども」さんとどう向き合っていくか,はテーマの一つになります.基本的には,大歓迎で"喜び・驚き"です.時には”戸惑う”こともありますが.「学習の進んだ子ども」の定義として,”難問が解ける”が一般的には通用しそうですが,もっと広角で見てみましょう.■ 本blogは1/15にupしましたが,その後,紹介したaさんについて事実誤認・勘違いがわかり今回改訂いたしました.改訂前の箇所は小文字表示としましたので比較して違いを確
学習の進んだ子ども(その3) 1~1000まで書き続けた小1生
算数・数学教育に関わって「学習の進んだ子ども」さんとどう向き合っていくか,はテーマの一つになります.基本的には,大歓迎で"喜び・驚き"です.時には”戸惑う”こともありますが.「学習の進んだ子ども」の定義として,”難問が解ける”が一般的には通用しそうですが,もっと広角で見てみましょう.1 から 1000まで書き続けた小1生■ 詳しい経緯は後述しますが,学校で10進位取り記数法を習ったばかりのaさん(当時,小1生)の紹介で
「テスト≓ 点数」というイメージがすっかり定着しているような現状下ですが, 無解答 にも関心をもちたいもの.誤答=無解答 ではありません.■ ここでは現在,国内で実施されている種々の試験の中で,参加母集団が最大規模の全国学力・学習状況調査(以下,全国学テ)結果を基にして気付いた点を挙げます.全国学テ結果 資料より■ 毎年秋,国立教育政策研究所(国研)より,その春に実施された全国学テの調査結果が報告されます.平均点,得点分
同類項をまとめる,平方完成する等々の式変形は,算数・数学の基礎であり,身に付くまでの反復(ドリル)も必要です.しかし「式変形のための式変形レッスン」のドツボにハマってしまうことも.■ 式変形に限らず「学ぶ≓真似ぶ」ということで,ひたすら計算ドリルレッスンに没頭するとどうなりますか?「思考する」ことよりも,「答が合う(マル○をもらえる)」ことに気持ちが傾きそうですね.ここでは,学年進行とともに増加する式変形に焦点を絞ってみます.式変形の背景
~(中略)~ 正解は「(ドアを)変更した方がよい」なのですが,解説をみてもシャクゼンとしない向きがあります.こういう場合は,"統計的確率"の出番です.■ モンティ・ホール問題を再確認しましょう.モンティ・ホール問題(前編)■ 3枚のドアの陰には,当たり(新車)ドア1枚はずれドアが2枚あり,あなたは適当に1枚選びます.次に.司会者モンティは残りの2ドアのうち,はずれドアを開きます.そしてあなたに問いかけます.最初に選んだドアを変更しま
直感 vs 論理 … 両者の解法を比較できる適例として,この「モンティ・ホール(※)問題」を挙げます.※モンティ・ホール:アメリカの名司会者.かつて,ある番組で本問を紹介し,全米中で数学者も巻き込んでの議論が沸騰したとか.■ 3つのドアがあり,1つのドアの後ろには新車が,残りの2つのドアははずれ(番組ではヤギ)です.Q1 モンティは次のようにあなた(プレイヤー)に問いかけます.Ⅰ あなたは,適当に1つのドアを選んでください.
積分計算には,積分定数Cが付きもの.ただ,実際のところ,積分定数は"形式的存在"のイメージが強く,付録・お飾り といった印象かと.この際,再認識をしましょう.■ 高校教科書(数Ⅱ)を見る限り,積分定数の解説は実に淡泊であり,このような扱いだと積分定数は注目されないでしょう.「答案には "+C を忘れないこと!書かないと減点されます!」… と注意喚起される程度正に,付録・付け足し ですね. 積分定数は "決定条件"なのです!
三角関数(含む三角比)にある程度慣れた頃に,フト疑問を持つヒトがいます.「sin って何?」と.最近も次のような質問をtwitter上で見つけました.■ 質問の主旨は$sinθ=\frac{1}{2}\ $$と$$sin\frac{1}{2}\ をしばしば混同してしまう$ということのようです.■ 次のように“正しい”説明する数学リーダーもいます.前者:三角方程式で,0°≦θ≦180°ならば,
ベン図は集合の範囲の見える化に必須のツールです.その際,円3つまではスイスイと描けるのですが,4つ以上となると…4集合のベン図■ 下図は,集合A, B, C に,何とか集合Dを付け足したものです.■ 「何とか」としたワケは,円3つで8部分(領域)に分かれていたところに8つの各領域ごと,集合Dのメンバーで{ある,ない}の判断をするつまり4つ目の集合Dでもって,すべての領域を2分割しながら描く必要があったからです.平面を2⁴=16分割するこ
内分は特に問題はないとしても,外分となるとガラリと様相が変わるのは,今も昔も同じようです.一体何が…■ つい先日も,twitter上で外分の質問を見つけました.それもほぼ定義そのもののような内容で「昔と同じ.全然カイゼンされていない!」との思いを強くしたところです.外分のどこが難しいのか■ 要因をいくつか挙げます.(1) 外分点が正しく打てない(作図軽視の傾向?)⇒ 定義がナットク感を持って伝わっていない(2) 外分公式に登場する
ケータイの普及は電話番号暗記を無意味にし,カーナビの浸透は方向感覚を弱体化させました.さて,キャッシュレス化の流れはどんな影響を与えるでしょうか.特に,算数関係者が留意すべきことを話題に挙げます.杞憂に終わればよいのですが.十進法理解の決め手は通貨だった?■ 本テーマの結論ですが,「算数・数学の基本の基である十進法(→今後10進法と書きます)を理解し,その仕組みを身に付けようとするとき,日本の通貨は実に大きな貢献をしている」
例えば,1/7=0.1428571428…, √2=1.4142135… について,この両者共通に使用されている「…」は雰囲気として分かりますが,何かスッキリしないところありませんか.「…」の読み方&意味■ 読み方は,"3点リーダ"が本家らしいのですが,"テンテンテン"と言っても通じますね.文字変換の際は"さんてん"と入力するとよいでしょう.数学では,継続や省略 を示す際に用いられます.なお,一般文では「…」の外にピリオドを用いた「...」が
√5 など根号で示される無理数に係わる独特の変形:有理化(rationalization)を話題にします.ところで,1÷2.236 と 2.236÷5 について①筆算で計算するとき,どちらがラク? ②両者の値はほぼ等しくなりますが,なぜ? "有理化"とは?■ 有理化とは,無理式において,その一部を根号のない形に同値変形することをいいます.最も一般的なケースは,分母の有理化です.$$\frac{1}{\sqrt{5}}=\frac{\sqrt{5
前回に引き続き θとsinθ の大小を見極めて,三角関数の微分に関する「あの」重要定理(以下,超定理 ※1)の証明に進みます.※1 「超定理」↓Q1 (突然ですが)上式の計算について意味を解説してください.A1 1°=π/180≓0.017453(弧度法)ここでsin0.017453≓0.017452(関数アプリ:ke!sanより)よって, θ=0.017453(=1°) とおくと$$\frac{sinθ}
唐突な問いかけで「?」かも知れませんが,ある超重要定理ナットクへの"0.1歩"として話題に挙げました.■ その定理(以下,超定理)とはのことですが,登場する場面の多さ&広さ&深さが超定理の重要性を示しています.それもあってか,証明自体はサラッと流され,「ホラ,またこの定理が使われるよ」と論が展開され,同時に計算問題も次々と紹介されていく現状が散見できます.■ ここでは,息継ぎをするべく,算数や中学数学とのつながりに留意しながら証明自体に注目してみま
以前,街中で見かけた光景です.話の展開に多少(かなり)ムリ感もありますが,お付き合いください.■ 図は右側角に空地がある交差点です.迷い犬が手前から向こうへ歩いていました.すると,彼(彼女)は,右折したかったのでしょうか,青線で示した「歩くべき歩道」など全く気にもせず,突然,ピンク色のルートを歩き出したのです!犬の選択を数学的にみると・・・■ 点Pにいた犬は,点Qに向かうため,直線PQ上を歩いたワケです.△AP
中間値の定理を身近な例で再認識しましょう.ネーミングも気になります.マラソンで中間地点と言うように,"中間=真ん中" と受け取るヒト,いないのかな?■ まず翻訳の件から.中間値の定理は,intermediate value theorem の訳なのですが,intermediate には,中間のほかに「~と~の間にある」という意味もあるのでよろしいワケ.⇒ 実は,中間の第一義的意味は,「aとbの間」なのです(複数の事典より).したがって,中間値の定理
過日,’22全国学テの結果が公表されました.学テを巡る議論はいろいろありますが,以前から小学校国語と算数は学力保証の視点で分析すべきと考えています.■ 理由は次の2点です.①平均正答率:比較的高い②正答分布表:グラフが右(高得点側)にかなりずれた正規分布「もどき」形になっている(グラフ:小6算数)したがって,難問を並べた構成ではなく,基礎(の基礎)をチェックをするべく, 通過(すべき)テスト ⇒ 学力保証 の色彩が強い
いまさら筆算?という声もありましょうが,筆算ルール・仕組みの大もとを確認することはムダではないと思います.■ 筆算が"how to指導"に傾く事情は分かるのですが,徹頭徹尾ドリルで押し続けるのはいかがかと感じます.■ 筆算に限らず,計算の原理を確認しておくことは, 直接子どもたちに説明する・しないは別にして,十分意味があります.①指導上の余裕にもつながること ②指導者の"姿勢&奥行き"を見抜く子どもへの対応(小学生でも結構います)1
球の体積Vはrを半径として $$V=\frac{4}{3}πr³$$と示され,中1で習います.■ 球の体積公式(以後,球Vとする)は,中学生には「証明はしない・できないが,計算はさせる」という何とも扱いにくい公式ですね."~と知られている"定理の代表です.正式には高校の数Ⅲで学びますが,数Ⅲは選択科目であり,履修率はおそらく10%未満かと.つまり,大半のヒト(国民)にとって,球Vは,13歳前後で紹介され,後は入試や就職試験等で公式を思い出すくらいの付き合いに
定理や法則はすべて証明した上で次の段階へ進みたいものです.しかし実際は,π(円周率)=3.14159・・・のように,定理・法則の「ユーザー」と割り切るしかない例も少なからずあります.ただ,その「割り切り方」は大切ですね.「詳しくは大学で習うが,ここではおおよその値でいこう」はまずまずとして(※実際は大学でも関心をもつヒト以外はムリ)「ワケはいいから結果は覚えておけ」はワーストかと.円周率って何だっけ
是非はともかく公務員への熱は高いものがあります.今年度の公務員試験(1次)もほぼ終了.既に次年度に向けた準備もスタートしています.■ 高倍率ゆえに,1次はペーパーテストで志望者を絞るしかなく,いきおい問題自体の難易度も上がっています.■ 中でも数的推理・判断推理と称される分野の結果が合否に大きく響いているようです(公務員に必要な資質かどうかは"?"ですが).ここでは,判断推理に焦点を合わせて,数学的思考を深めましょう.■ 上図
数式&公式はだいたい”無色・無味乾燥”です.したがって,そのまま平板に解説する ⇒ 暗記 になりがち.■ 暗記も必要ですが,知的好奇心を抜きにした公式の"暗記術"のみを披露・駆使していますと,いずれ壁にあたります.■ ここでは,暗記カイゼンを図るべく,公式の背景となるイメージ例を紹介します.⇒ イメージと一体で理解する数式・公式 2÷0.1 と 0.1÷2■ 2÷0.1 ですが,20
2次曲線(放物線・だ円・双曲線)は,(直)円すいを平面でcutした際,その切り口として現れます.円すいは3次元,平面は2次元の図形ですから,2次曲線は,3次元と2次元図形の境界で見える曲線ともいえますね.(下図は,東京書籍数学C)■ 今回は,だ円に注目します.■ まず,左図のように,円柱を斜平面で切り取ったときの切り口がだ円になることはよろしいですね.中の図は「かぐや姫とだ円」です.右写真はレストランでよく見かける注文伝票を差し入む器
過日,ある国会議員が財務金融委員会で「三角関数より金融教育を」と発言しチョット話題を呼んでいます.※かつて,鹿児島や大阪の(元)知事も三角関数を例に挙げ持論を展開しております.三角関数は責められる易い?■ 議員は,数学全般を踏まえた上で,時代が要請する金融教育の重要性を説き,その対極に三角関数を置いたのです.2次関数やベクトル,微積分ではありません.なぜ三角関数でしょうか?思い当たる節■ 金融教育の「引き立て役」として,
重心をめぐるあれこれの話題は,かなり「スジ」のよい数学導入ツールになります!重心とは■ 物体の各部に働く重力をただ一つの力で代表させるとき,その作用点を重心Gといいます.(小学館デジタル大辞典による) なぜ重心は一つか■ 高校生や学生に「重心は一つしかない.なぜ?」と問うと,大半がキョトンとした表情をします.「聞いたことがない」「聞かれたことがない」「考えたこともない」.中には「そんなことを考えてもテストに出ない」という
日常生活で距離や面積,重さなど連続量を扱う際,数値は近似値で処理します.しかし,授業・テストとなるとどうでしょう.近似値は"冷遇"されていませんか?■ 授業やテストでは,近似値&近似式が"主役"になることはめったになく,付け足し程度で解説がなされることが多いようです(特にテストで顕著).■ なぜでしょうか?(1)近似値には「2.3ぐらい」「約55%」などのように,答にある種の幅が出来,「数学は答が一つだ!」という原理原則から外れ,子どもたちからは
日常生活で距離や面積,重さなど連続量を扱う際,数値は近似値で処理します.しかし,授業・テストとなるとどうでしょう.近似値は"冷遇"されていませんか?■ 授業やテストでは,近似値&近似式が"主役"になることはめったになく,付け足し程度で解説がなされることが多いようです(特にテストで顕著).■ なぜでしょうか?(1)近似値には「2.3ぐらい」「約55%」などのように,答にある種の幅が出来,「数学は答が一つだ!」という原理原則から外れ,子どもたちからは
一瞬,ナヌッ!とくる問題ってありますね.twitter上で見かけた例やオリジナル問題から,いくつか紹介します.解く・解ける に留まらず,先に繋がることを期待します.Q1 下図で三角形ABCの面積を求めてください. Q2 次の問に答えてください.第30回富山県思考大会(小学生)より Q3 自然数{1,2・・・ 9} のうち,3つの数を用いてできる一番大きい数をかきなさい.同じ数をくり返して使用してもかまい
独特の言い回しが数学にはありますが,その扱われ方はどうでしょう.無意識に「ぞんざい」になっていませんか.■ 教科書をみると,中1数学から記述が急に「大人びて」きます.論理用語や記号が増加して,中には戸惑う学習者が表れても不思議ではありません.<中1の教科書から一部紹介>■ 字面は追うことはできても,何を主張しているのか分からないという声が大半でしょう.関数の定義そのものですから,中1生がナットクするのは難しい!?
新学期ですので数学から少し離れて一般の話題提供をします.テーマは協議(=集まって相談すること)です.協議そのものに何ら疑問はありませんが,フト首を傾げたくなる場面が目に付くようになりました.■ 「ハイ!では,このあとは,いつものように各グループで話し合いをしてください.10分後,代表の人はグループ報告をしてください」「本日の研修会の進め方ですが,①担当指導主事による講義,②各班ごとの協議,➂各班からの報告、④まとめ,の順となります」&nb
無数・無限は数学(or哲学)で扱う大テーマの一つです.算数・数学についていろいろと論を展開する際,無数や無限との出会いをどう扱っていますか?■ 限りなく大きい(=無限大) の記号は,∞ と表され,高数Ⅲで登場します.すると「17歳前後で無限を習う」のだという見解が示されそうですが,果たして正しいのでしょうか.無限という語句は出ていませんが・・・■ 無限の中には,「いくら数えても切りがない」という場合も含まれます.この視点から算数
〇は△のための何条件か?という問がありますが,"問題のための問題"となってはいないか,という疑問&不信を以前から感じてきました.順を追って話を続けます.そもそも命題とは■ 命題とは真偽のつく文や式のことです.「2+3=5」も命題に入りますね.すると,数学教科書のどのページも命題だらけになります.そこで,少し絞ってみましょう.真か偽か■ 命題の典型は,p,q を条件として pならばq という形です.これをp⇒q
円周率π≓3.141592653589793(小数点以下15桁) を用いたのは,7年に及ぶ飛行を終え,奇跡の生還('10.6)として歴史に名を残した惑星探査機初代「はやぶさ」の制御に関わってのことでした(※異見あり.後述).■ すると,π≓3 というのは,何ともおおざっぱで"粗い"扱いですね.■ 平成生まれの方はご存じないかも知れません.今から20数年前,円周率πがマスコミで大々的に取りあげられたことがあります.πは迷惑そうでしたが(私見).
数の感じを数えることと混同してはなりません(ダンツィク「科学の言葉=数」岩波).音の発声が直ちに会話にはならないと同様,数の感じから数える(数の誕生)までは,気の遠くなるような時間がかかりました.■ 数の感じとは何でしょう.ダンツィクは,ある鳥の例を紹介しています.鳥が巣から離れたとき,巣にある卵を一つずつ抜き取っていく.その鳥は,残り3個まではソノママでいるが,残り2個なると,異変に気付いてその巣を捨てる.⇒ その鳥は,4と3の区別は付かないが
整数方程式 5x-13y=1 などは,ごくありふれた問題で,解くことも「楽勝」でしょうが,少し立ち止まってみましょう.Q1 整数方程式 5x-13y=1 を解いてください.x,yなど未知数が2個の場合,通常,方程式は2本必須です.しかし「x,yは整数である」という条件が付くと,式の本数が1本でも解が求まることがあります(解がないときも.後述).A1 次は,定石による解法です.整数方程式が解けた!でエンドですか?■ 解を振り
北京冬期五輪が始まりましたが,アイススケートの刃に"同情"します.もの凄い力が,あの細い刃にかかっているのでは?と想像するからです.いろいろな視点から考えてみましょう(知り合いの”物理プロ"G氏に協力をあおぎました).着地(氷)のとき,受ける衝撃とは■ 体重60kgの選手が,0.5m跳び上がって,着氷したときの衝撃力Fはどれくらいでしょう?実際は,斜めにジャンプするのですが,話を簡単にするため,垂直方向とします.聞き
過日終了した'04大学入学共通テストの数ⅠA「山の仰角」問題がチョット注目されました.ワケは,①日常生活数理問題であること,②地上配備迎撃システム「イージス・アショア」の新聞記事との関わり にあります.■ 重要な縮尺条件が付いており,水平方向:1/100000, 垂直方向:1/25000 のとき,三角比表をもとに,実際の角度(近似値)を10択から求めさせる内容となっています.■ 確かに三角比(tanθ)を用いてはいますが,解答の本
y=3sinθ+2cosθ という関数は,y=√13sin(θ+α) と変形(合成)できます.この合成公式,唐突に√13 や 意味が分からないα が登場しますので,評判よろしくない公式の代表格です.突然,√a²+b² でくくる ⇒ これが不評■ 唐突感ある授業の場合,その多くは,一方通行で,天下り式の展開となります.■ √13や α が登場する舞台裏,また,そもそも合成自体の必然性の理解も得たいですね.すばら
間もなく50数万人が受験する大学共通テストが実施されます.ここではテスト内容ではなく(畏れ多く),マークシートテストに宿命的に伴う選択肢にまつわる話題を提供します.■ 大学共通テストを筆頭に,マークシートによる解答方式(以下,マークシート式)が中高大入試でかなり多く採用されています.■ '21共通テスト1設問ごとの選択肢数国・英・・・5択が減り大半が4択理・社・・・4,5択が多い.例外的に8,9択もある数・・・□に数や文字を選ぶ変則形
20年近く前,身近な教具であるサイコロをしげしげと見つめ,再認識いたしました.ある新聞記事をみたことがきっかけです.■ 本blogでは二度目の登場になりますが,入曽(いりそ)精密製(入間市)の超精密サイコロを話題にします. &nbs
ごくありふれた三平方の等式:7²+7²=98 が,意外にも高校生や学生の弱点をケッコウ突きます. ■ 図のように,短い棒aと長い棒bがあります.aを地面と垂直に立てて,bの端をaの先端部と地面に付けます.このとき,bと地面とでなす角θを答えてください.Q1 90cm と 100cm ⇒ θ は{①55° ②65° ③75° ④80° ⑤85° }くらい
今日,コロナ感染者数や気温,人口,経済の変動など,グラフに接する機会は日常的です.そのグラフですが,数学教科書に基づく授業展開は,当初から”増減・凹凸”onlyで,それ以外の分析視点が欠けていませんか?■ 2次関数や3次関数,三角関数などでグラフを扱いますが,"入試問題解きのためのグラフ"という色彩が濃く,グラフ自体にもっと焦点をあてるべきです.■ 変化の特徴をどうとらえ,その式化はどうするのか?この視点を踏まえた上で,その基本の基とし
「数学は記号の学問である」と言われています.確かに,数も記号,演算(+, × , y' ・・・)も記号.だから,数学は世界共通"言語"なのでしょう.この記号を"敵"にしてはなりません.「記号は"約束"にすぎない」 との声?■ 図形の問題等で,補助線1本付け加えるだけで証明が一挙に解決する場合がありますね.図は,三角形の内角の和が180°の証明です.補助線Lを引くだけで一気に解決します.それに比して,記号の意味や意義などは,しょせん
グラフの交点を求めよ⇒それっ!連立方程式を解けばよい! とやや条件反射的に計算作業に取りかかる向きがあります.引っ掛かるところを紹介します.本テーマのきっかけ■ 数年前,学生が主体となって実施した中2生対象の復習で,次のような場面に遭遇しました.■ 学生「直線 x=2 をグラフに描いてください」S「・・・」.ほとんどの生徒のペンは止まったママ. やや憂鬱な沈黙が続き,空気が冷えてきました.ようやく,ある生徒が「x=2 って,答え
内積については,ひたすら問題解きのための重要ツールとして扱っているヒトが少なからずいるのでは? ナットク感もナルホド感もないとすれば,モッタイナイ話.まず 内積とは■ 内積の定義は次のようです.■ 「・」を普通のかけ算と混同(同一視)して,雑に書いたり,中には省略してしまう解答も見受けますが,答案の採点について言えば,極めてよろしくない印象を与えますね.「このヒトは数学のソモソモが分かっていない」⇒ その後は「厳しい目」で答案採点が続くことに
平均値が世の中を動かしています!経済指標や気象変動dataなど,平均値は日々カッポしています.この”平均”ですが,計算自体は実に単純で簡単.しかし,意外な盲点もありそうです.戸惑う”平均計算”■ 12kmの道のりを,行き:6km/h, 帰り: 4km/h で往復したとき,平均の速さは?⇒ (6+4)÷2= 5 km/h ではありません! ■ 往復距離:24 km, かかった時間:往路2h,復路3hで計5時間
ノーベル賞は人類の英知の象徴と言うべきもの.その受賞者について,国別ならまだしも,国内各地域ごとの"ローカルモノサシ"を当ててあれこれ述べるのは,的外れであることは重々承知しつつも,気になることを話題にします.これまでの受賞者一覧■ 地球規模で見れば,狭い日本列島,どこでも同じだろう,という向きもあるかも知れませんが,一応,受賞者を出身高校所在地別にプロットしてみると,次のようになります.ほぼ空白の「北日本」出身者
コロナ禍,今や宅配サービスは必須インフラとなりました.気になる料金ですが,ある大手宅配業者の料金表によると「120サイズ1610円」などとなっています.120サイズに限定して数理的な解釈を試みましょう."120サイズ○○円"の意味■ 「120サイズ」とは,荷物を直方体(各辺をa,b,c)として① 100cm<a+b+c≦120cm② (荷物の重さ)≦15kg の場合をいいます.①で"100cm&
"学習の進んだ子ども”の第3弾です.ある日「今日は13日(金)だね.年間に何回くらいあるのかな.ない年もあるのかな」とつぶやいたところ,数日後,T君(当時高1)がレポートを提出してきました・・・."3昔"も前のことであり,また,レポートのママ公表についてT君本人の了承を得るのも実際的ではなく(理由は後で),レポートの趣旨に沿って「13日(金)~」の解説をします(下はレポート冒頭の一部).平年の場合■ 次の表(下段)を見てく
小4で「位置の表し方」を習います.つまり,簡単に言えば"道案内"です.日常でよく目にする道案内ですが,数学の土台を形成する座標概念の第一歩になります.小4算数(啓林館)■ 代表的な道案内3例を紹介します.道案内(Ⅰ&Ⅱ)■ さほど違いのないように見えるⅠとⅡですが,算数・数学のリーダーは,この「違い」に鈍感であってはなりません.<ⅠとⅡの違い>■ Ⅰ(左)とⅡ(右)を比較して,より基本(原型)に近いのはどちら
各種保険料は,年齢や過去の発生数等を基に確率計算により決定されています.確率は統計とともに数学教育でも重視されつつあり,その存在感は強まっています(その是非は別として).しかし,今も昔も,確率は,超苦手・大嫌いというヒトがいます.本稿では,コインとサイコロをあげ,意外性ある確率の問いかけをいたします.どう説明します?Q1 「サイコロをふったとき,3以上の目が出る確率は, 4/6(=2/3) と習ったけど,目は {出る,出ない} のいずれかなので,答
背理法ですが,まず,漢字表記から受けるイメージがよろしくありません.何しろ「理に背く」ですからね.実際,多くのヒトにとって,背理法との初対面の印象は,どこかごまかされたような,スッキリ感の持てない出会いとなっているようです.さらに,背理法に首をかしげていると,数学を得意としているヒトからは「数学論理の素晴らしさにカンドーする」みたいな言い方をされることもあるようで,背理法を巡って、教室は2分されるかもしれません.源流は算数に背理法の源流を算数に見出
機械的(安易?)にy軸を用いている傾向ありませんか.もう少しy軸に気を遣って「彩り」を持たせると,算数・数学の展開もより充実すること確実です.親和性ある例日常生活とも親和性がある例を紹介します.社会や理科でよく使用されていますね.例1 x軸:時間,y軸:温度や降水量 例2 x軸:地域,y軸:リンゴ生産高これらは単純と言ったら失礼でしょうが,要するに,y軸が温度や生産高という1次元量ですので,理解度も進むワ
量の中で,距離,重さ,温度,角度などは,それぞれモノサシ,秤,温度計,分度器という身近に見られる道具で計量することができます.しかし,面積については,どうでしょう.プラニメーターという面積計があります.図形の輪郭(りんかく)をなぞって1周すると面積を計測できるというプロが使用するもので,価格も結構します.アナログ式精密装置であり,教室内で子どもたちが遠慮なく使えるような教具ではありません.スマホでは,地図上の閉じた形の面積を表示するアプリや画像dataから
空間において2直線がねじれの位置にあることを特殊なケースとして受け止めているヒトが少なくありません.はたしてそうでしょうか.そこで数値化を試みました.ねじれの位置とは中1の後半で学習します.※1の説明文だけですと「何言ってるか分からない」「イメージがわかない」というヒトが多いと思われます.中1という発達段階からするとムリもない話かと.そこで※2は 2直線が同一平面上にある・乗っかっている を示して
暗号アルゴリズムは,桁数の大きい数の素因数分解が難しいことをベースにしています.しかし,スーパーコンピューター富岳(世界一の性能. '21.6現在)にとって,素因数分解などまったく問題にせず,"瞬殺"解答となるのでは?と思う方いますよね.数年前,素因数分解の困難性への素朴な疑問,つまり,「スパコンなら一瞬即答ではないか」について,K氏(現在,h高校長)に相談したところ,氏の学部時代の友人である方(関西方面の大学教授)から氏経由で本テーマに関するコメントを頂戴
昔(室町時代)からあるクラシックくじです.ここでは,①ゴールは重複しないワケ,②ゴールに合うくじの作り方 について考えてみましょう.ルールを確認しておきます.縦線の上先端部に動点Pがあり,Pは次のように動きます.①縦線を上から下に向かう(=戻らない).②縦線L1,L2が横線mでつながっているとする.PがL1上にあるとき:Pはm上を動き,L2に移動する.PがL2上にあるとき:同様にしてL1に移る.ただし,横線mでつな
未確認飛行物体(UFO)ついては昔からいろいろと「語られて」きました.つい最近('21.5),米国防総省の元担当者の発言があり,また,近々同省から報告があるということで,注目が集まっています.超高度な知識と技術を備えた宇宙人が実在するのか,否かという論は「手に負えません」ので,それはさて置いて,別視点からチョロリと話題を提供します.キラキラ星に宇宙人はいない!星は大別して,次の二つ.① 恒星:自ら光を発し,そのエネルギー源は核融合反応である.②
■ 0.999・・・=1 については,いつの時代も世代を超えて話題になります.ということは, 今日でも,ナットクのいく解釈・解説が不十分 という証左かも.■ 数学セミナー('19.11)で,数学界大御所の一松信氏(京大名誉教授)が取りあげていましたので,認識を新たにした次第です.やや 無理筋 の説明A1■ 手短で説得力に富み,ナットクするヒトも少なからずいます.しかし,多くの数学関係者が指摘するようにムリがあります.有限小数
■ 三角形の面積公式は,s=ah÷2 (a:底辺の長さ,h:高さ) です.言うまでもなく鈍角三角形も含めての公式ですが,しっくりこない(釈然としない)ヒトもいるようです.■ その違和感なり不安感の大元は,高さが底辺から離れていることにありませんか?■ 数年前,山形県の小学生Mさんの自由研究作品と出会いました(「算数・数学の自由研究コンクール」理数教育研究所主催).残念ながら全国審査まで届きませんでしたが,教科書にある公式に正面から向き合った印象に残る作品で
■ 1次関数 y=ax についてです.yはxの関数ですから,当然x,yは変数になります.では,aは何でしょうか.⇒ 変数xの係数がaということですので,aは定数(扱い)となります.が,コトはそんなに単純ではないのです. 文字だらけの式Q1 1次関数g: y=ax2-a2 ①について,どんなaについても直線gが通らない領域を求めなさい.■ この種の問と初対面すると,少なからずのヒトはキョトン「?」とします.文字だらけ
■「数学史を踏まえる」などと大仰な言い方はしませんが,新しいコトを取りあげる際は,その"必要性(or必然性)"を感じさせたいもの.■ ラーニングをアクティブにするためにも,コトとコトの間にどんな流れや背景があるのかを,体感・追体験することはかなり重要です.学ぶ意欲と直結すると言ってもよいですね.例をいくつか紹介します.三平方の定理への誘いQ1 正方形AとBの面積の和と等しい面積をもつ正方形Cを作図してください. ■
よく知られている植木算についてです.ある距離に一定間隔で木を植えたときの,木の本数,間隔数,そして距離との関係を,ちょっと"引っ掛け”も細工したりして問う問題です.■ 上の図の場合は両端にも木を植えることより,5m×6本=30m となり, (木の本数)=(間隔の数)+1となるわけです.これを基に,次のような内容が公式(or まとめ)として紹介されています.よく目にする植木算公式です・・・■ Ⅰ 両端に木を植える :木の本数=間
■ 数学自体に対して,得意・苦手 と2極化する傾向があるのですが,その中でも空間図形に関わっては,超がつくほど毛嫌いするヒトも少なくありません.■ よくあるサイコロの問題.3の目を書き足してください(向きにも注意).全国学テ から"寒い"現実■ 現状の一端を紹介します.全国学テ結果です.小6:2014(H26)実施 ■ 何のことはない,直方体を真上から見たらどんな形?という問いかけなんです
■ 小4で面積を習います. そして小~高と,面積・体積を求めること(→求積問題)は,算数数学における「花形」になっています.対象となる”相手”が図示されることもあり取り組みやすいのでしょう. ■ たとえば,三角形の面積公式が,鈍角三角形でも通用することなどは,その不思議感から子どもたちの知的好奇心を高めています.■ そして,次々と難易度の上がる問いかけがなされ,中~大学入試でも中心的な存在となりました.結果,求積問題は日々の授業でもかなり重要視されておりま
新学期のスタートにあたり,算数数学を一旦離れて,”話し方”がテーマです.「教育はココロ.話し方?それは技術レベルのことだろう」と異論をもつ向きもありましょう.ここでは不毛な二項対立論を避け,話す際の”ココロ構え”について取りあげます.TVドラマ会話 と 日常会話 とどこが違う?■ 何気なく観ているTV・映画や舞台における俳優の会話 と 私どもの日常会話との違いは何でしょう.人にもよりますし,また感じ方の程度も差がありましょうが,次の点を挙げます.
■ 先日,twittter上で次のような質問を発見しました.はじめは題意が?でしたが,そのうち目が醒めました.もしかすれば数学を十分理解している方が,”その上”でツイートしたかも知れません.■ 以前も取りあげました文字です.数学における「文字」指導は,何十年も前から指摘されてきた課題ですが,広域的に改善された・効果的な指導方法が確立したといった話は耳にしておりません.何とかしようではありませんか.紹介したtwitter問題の背景です(斜線は約分操作).&n
■ 今日的な学力として資料の活用が注目されています(昔風に言えば,統計処理の初歩). 現下のコロナ関係でも,感染数値のタイトルが日々発信されています.■ ”感染者数 高止まり”,”感染率拡大緩和” etc ・・・どんな意味でしょうか.ヒトにより微妙な解釈の違いもありそうです.■ そこで,理解・解釈を深めるため,ナント「微分」まで持ち出してみました.記事と合うグラフはどれABC
■ 数学教育と物理教育に携わるヒトは,もっと接近すべきだと前々から考えてきました. ■双方の接近は,結果として,理数を学ぶヒトに「よさ」が還元されると確信します.■ 特に,2022年から新学習指導要領がスタートしますが,ベクトルが数学Cに入ったことで,高校生の過半数はベクトルを「知らず」に卒業する可能性がかなり高いと予想.すると,物理の担当者は,ベクトルを「全く新鮮な気持ちで聞く」生徒たちを前に,力学等の説明をしなければなりません.■ 従来以上に,数・
■ 算数・数学を解説・展開しているとき,①詳しい説明は必要だけど,ここはラフに進める②(詳しい説明の必要性を自覚せず)ラフに進んでいる という場面が結構ありそうですね.特に,論理をつなげる小さい,細かい部分・結節点で見受けられます.■ 数学的には,枝葉部分に相当する細かい個所ですが,少なくするに越したことはありません.児童生徒の目は怖いです.冷静に客観的に見つめられていると覚悟しておきましょう.■ 約束やルールに根拠を求めること,これは思考
■ 算数・数学教育に関わる者(シャ)にとって,子供の伸びは大きな喜びです.■ また「学習の進んだ子供」の"才"との出会いも,感激・驚きです.■ その際,"才"については,ややもすれば"テスト高得点"に目が奪われがちですが,子供の学校数学を超えた”理数センス"により関心を抱き,それらの見逃し・見落としがないようにしたいものです(自戒を込めて).自由研究は「青天井」です■ △△ピックや○○コンテストと異なり,自由研究は,正に
■ 24÷6=4,18÷3=6 のように,割り算すれば,元の数(被除数)より商は小さくなる のだと思い込んでしまっているヒトは少なくありません.言葉自体が「割る」ですからね.■ 「そりゃ,少数でしょう」と主張する方もいるかも.でも,後で紹介する全国学テ(小6)の結果をみると,そんなに甘くないことが分かります.「算数」ではこんな問が■ 小3算数「15個のリンゴを3人に同じ数ずつ分けました.一人分はいくつになりますか」 ⇒ 15÷3=5 一人分は5
■ 量の中でその「量感」が比較的安定しているのは,長さ(1cm,1mなど)くらいでしょうか.重さや広さ,速さなどになると”迷う”ヒトが多くなりますね.■ 中でも角(度)は,身近で扱う機会もほとんどなく,量感を持つのは大変です.■ では,坂の勾配(傾き)についての量感をチェックしてみましょう.Q1 図は,べた踏み坂で有名な江島大橋(えじまおおはし)です.何度くらいの坂でしょうか?正解は最後に紹介します. Q2 次の写真は,
■ 紙(長方形)を次々に半分づつ折っていきます.■ この紙折りですが,数学的には線対称変換であり,指数と直結します.また,高校で習う対数(log x) の「萌芽」もチョロリと見ることができます.■ 指数は中1で学びます.その際,しょっぱな(導入)で「5×5を52 と書きます.同様に,3×3×3 は・・・」といった解説とお目にかかることもあります.率直に言って×です(いやx2 かも).■ 新記号が登場する必然性や流れが見えません.した
「ブログリーダー」を活用して、あ北のネギボーズさんをフォローしませんか?
背理法はいかにも数学らしい証明法です(どこか釈然としないながらも渋々ナットクしている向きもアリ).ただし背理法の核心部分を浅読みor誤解しているケースも散見できます.背理法がシックリこない主因■ 犯人捜しの場合,「容疑者がA, Bの2人いる.Aが犯人でないと証明された.よって,自動的にBが犯人である」とは断定できませんね.cや毒蜘蛛が真犯人かもしれませんから.■ ところが,論理(数学)の世界では「xは,Aであるか非Aであるかのいずれか一
数を学ぶはずの"数学"ですが,学習者が上級学校に進むに比例して,数が減り文字が増えます(ある代数の専門書はほとんどのページが文字で占領されておりショックを受けた記憶が).■ 中高の教科書から文字式を2例取りあげ,無味乾燥な文字式に「ちょっと味」を施します.a²-b²=(a+b)(a-b)■ 代表的な因数分解公式で学習者には抵抗感なく受け入れられていますが,意味を付加しましょう.チョットした御利益ですが.Q1 S=103²ー97² を計算しなさ
数学が分かるヒトからすれば「何でこれが分からないの?」という例に「少なくとも~」を含む記述や問があります.例:3割バッターが3回打席に立ったとき,少なくとも1安打する確率を求めなさい.■ 「少なくとも」を含んだリード文を見ると,思考が停止or頭がグルグル回る・・・というケースも散見できます.その際「これは読解力の差.数学以前の問題だ」とフンガイしても改善には1ミリも前進しません.日常生活と「少なくとも」■ 日常生活の中で「
全国学力学習状況調査問題と大学共通テスト問題(以下,学テ等)を拝見すると,出題者(国)⇒ 算数・数学リーダー への強烈なメッセージを感じます.■ すなわち「この問に応じた授業展開をしてね・するべし!」という方向明示です.※ 昨今,学テ等では1問が数ページにも渡る「大河ドラマ的長編」形式が定着した観がありますが,これについては後日テーマにする予定で,本blogでは小問をメインに話題にしました.「指導カイゼン」に絞る
空間ベクトルa,bに対して,外積:a×bとは次の性質をもつベクトルのことです.①a,bと垂直,②a×bの大きさ(長さ)はa,bのなす平行四辺形の面積を表す■ 外積をイメージしようとするとき,①はともかく,②で戸惑うヒトおりませんか? ■ 定義 a×b = a b sinθ で,右辺は図の平行四辺形の面積を示しています.ただ,ベクトルの長さOP=面積 とは??という(一瞬抱く)違和感です.■ 面積や長さ,時間等々の量を数量化したものをス
「算数・数学 ≓ 計算 」①と理解しているヒトはかなりおります.もちろん①を全否定はしませんが,即,計算に走る・ダッシュする姿には大いなる疑問を感じます.算数・数学の学びを単に「公式に当てはめ○をもらうこと」にミスリードしているのではないか?という懸念です. ⇒ 一つのカイゼン策が「計算前の見当付け」です.気になる授業光景から■ 授業や報告等でしばしば見かける光景(1) 「25.3÷2.3 を計算しなさい」<展開例>① 「まず5分間,自分だけでやっ
2進法はコンピューターと"一心同体"の記数法であり,10進法は日常生活に不可欠な記数法です.その点,3進法は存在感が薄いのですが,天びんと絡ませると教材としておもしろい結果が出てきます.3進法の例■ ある自然数xが3進法で20212(3) と表されているとします.※ここで,20212を二万二百十二 とは読まず,に/ゼロ/に/いち/に が普通の読み方■ 20212(3)を10進法で示すとx=2・3⁴+0・3³+2・3²+1・3¹+2 &nbs
「n個の部屋に(n+1)以上の客を泊めようとすると,相部屋(2人以上の客が入る)が必ずできる」という体験を基にした原理が"部屋割り論法"ですね.引き出し論法,鳩ノ巣原理とも言います.■ ネーミングからしてもわかりやすい原理であり,学習者のナットク感は高いです.しかし実際の適用場面となるとシックリ感は今一つということもありそうです.その原因を探ってみます.部屋割り論法 は相部屋の"存在だけ"を示す原理■ 部屋割り論法は,相部屋が何号室であるかは
有理数1/7 はある意味で分数の「代表」です.a=1/7にまつわる問をいくつか挙げます.Q1 aを小数に直しなさい Q2 b=0.142857…を分数に直しなさい Q3 aが循環小数となる理由を述べなさい Q4 その他(「a=1/7のイメージを描きなさい」)Q1:割算が延々と続きます.Q2:巧妙な式変形で求められますが,無限に続く数のかけ算や引き算をするので数学的には疑問符が付きます.正式には無限等比級数の和の公式(高数Ⅲ)を用います. Q4:かつて熊本の小6
点と直線の距離公式(以下,公式)は,受験数学では必須ツールですが,根号・絶対値付きの分数形式でゴッツいイメージです.特に,突然√a²+b² の登場に抵抗感がありそうです.定理 点(x₀,y₀)と直線ax+by+c=0 との距離d:\[d=\frac{ ax₀+by₀+c }{\sqrt{a²+b²}}\]点と直線の距離公式と学習者との「距離」■ 公式への「苦情」あれこれです① 数がなく文字だらけ ② 証明が
「怨嗟(エンサ)」は少しオーバーでした.しかし算数・数学の解説で,どこかあいまいさ・モヤモヤ感が残り,積もり積もってエンサとなることはあり得ます.実際「問題を解いていくとそのうちワカルよ」などと根拠の薄い弁解しながら先へ進む授業光景も散見されます.■ 先日,twitter上で見つけた一例です.関数y=f(x)のグラフをx軸方向にp平行移動したグラフの式は,y=f(x-p)となります.y軸方向も同様.⇒ 何で,x-p となるのでしょうか?x
\[例 \frac{3}{4}÷\frac{5}{8}=\frac{3}{4}×\frac{8}{5}\]2分数の割算は「計算はできるにしてもワケはわからない」典型例かも知れませんね.■ 過日,本blogで1当たりの大きさ…1って何?をupしたところ,√6さんよりコメントを頂戴いたしました.後述しますように2分数割算の計算ルール ⇔ 1当たりの大きさであり「本質」が同じですので,ここでは√6さん案をメインに話題を提供します.Q
30g+50g=80g, 30cm+50cm=80cm はよしとして,30°Cの水+50°Cの水=80°Cの水 は成り立ちません.その「ワケ」理解はいかがでしょうか.学生も含めてかなり怪しい状況です.■ 教材学研究第24巻「教員養成系大学生の量概念の実態と温度概念形成に向けた指導方法」(帝京科学大学 小池他,上越教育大学 高津戸)を基に話題を提供します.量は大別して2タイプ■ 日常よく目にする量についてですがⅠ:長さ,重さ,広さ etcⅡ:速さ,濃度,
立方体の回転もいろいろですが,中心を通る対角線を軸にして1回転してできる立体を話題にします.立方体という見慣れたモノを用いてはいますが,ケッコウな内容で手強いです.■ 写真では一番上の頂点で細い糸がかすかに見えておりますが,立方体がぶら下がっています.この状態で立方体をクルクルと回すわけです.■ 全体像はさておき,部分的に見ていきましょう(←"落とせそうな"ところから攻める!数学的思考の一つ).■ 図で,上の頂点Aに集まる3本の辺で四面体
ともなって変わる2つの量 ⇒ 即,比例! こんなパターンがスッカリ定着し,算数・数学リーダーは「早く比例計算に導きたい」ようにさえ見えます.計算の前に「観察・思考」があるべきです.■ 水そうに1㍑のバケツでくり返して水を入れたときの深さが1回:4cm, 2回:8cm, 3回:12cm…となった.このとき,・・・■ 上記のような例ならば,典型的な比例関係であり,計算式もすぐ求められます.日常生活に見る比例■ 図は
学ぶ上で「物理にあって数学に欠けていること」ってありますよね(もちろん,その逆も).例を挙げてその「欠く点」のカイゼンを図りたいと思います.典型的な問題2例A(物理) 地上19.6mのところから,水平方向に初速度2.0mで小石を投げた.地面に落下するまでの水平距離と着地に要する時間を求めよ.ただし,空気抵抗は無視するとする.B(数学) 図のように円筒形タンクに水が満たされている.底に直径5cmの穴から水が
最近は新聞が”遠く”なりましたね.ある小学2年生クラスで「明日,授業で使うから,おうちから新聞紙1枚持ってきて」と話したところ,aさん「センセ,新聞紙ってなぁ~に?」!この寒空光景はさておき,1紙面に約10000字は印刷できそうです(画像,宣伝等なしで).Q1 紙面上,相手が任意に決めた1文字を当てたいときの最小質問回数を求めてください.ただし,1問に対して相手は{yes, no}で答える というルールにしたがうとします.まず基本姿
全国規模のマークシート方式テストが本格実施されて約半世紀近くなりました.今では保護者はもちろん,先生もマークシート世代です.いまさらですが,染み付いた「マーク」を話題にします.「マーク」をざっとおさらいする■ 加熱する大学入試の改善として1979(昭和54)年に共通一次テストがマークシート方式(以下,マーク式)で実施されました.背景には,大学入試について,①合否が1回だけのテストで決定していること,②範囲外からの出題や難問・奇問の出題の指摘 等の要因がありまし
「算数つまずき」の一つ.まず1(単位量)がわかりにくい.自然数の出だしの数なのですが,扱いには苦労します.■ 代表的な問があります.Q1 $\frac{3}{4}m²の壁を\frac{5}{8}dl で塗れるペンキがあります.$$このペンキ1dlで何m²塗れますか.$A1 面積と使用するペンキ量は比例すると考えて,図のように比例式を立てると 面積 x=6/5 (m²) と求まります.が,正答率はあまりよ
最近は"こだわる"ヒトがめっきり減りました(数学に限らない?)."こだわりビト"は絶滅危惧種かも.学び合いする際,貴重な存在になり得るのですが.■ こだわること=要領が悪い の等式が成り立ちそうな空気を感じます.職場はもちろん,学校社会(特に授業)においてです.背景の一つにマークシート式テストの浸透があると考えます.マーク式が本格導入されて約半世紀.マーク式回答は時間との闘いという側面が強く,その際「こだわり」は障害なのでしょう.こだわり
√5 など根号で示される無理数に係わる独特の変形:有理化(rationalization)を話題にします.ところで,1÷2.236 と 2.236÷5 について①筆算で計算するとき,どちらがラク? ②両者の値はほぼ等しくなりますが,なぜ? "有理化"とは?■ 有理化とは,無理式において,その一部を根号のない形に同値変形することをいいます.最も一般的なケースは,分母の有理化です.$$\frac{1}{\sqrt{5}}=\frac{\sqrt{5
前回に引き続き θとsinθ の大小を見極めて,三角関数の微分に関する「あの」重要定理(以下,超定理 ※1)の証明に進みます.※1 「超定理」↓Q1 (突然ですが)上式の計算について意味を解説してください.A1 1°=π/180≓0.017453(弧度法)ここでsin0.017453≓0.017452(関数アプリ:ke!sanより)よって, θ=0.017453(=1°) とおくと$$\frac{sinθ}
唐突な問いかけで「?」かも知れませんが,ある超重要定理ナットクへの"0.1歩"として話題に挙げました.■ その定理(以下,超定理)とはのことですが,登場する場面の多さ&広さ&深さが超定理の重要性を示しています.それもあってか,証明自体はサラッと流され,「ホラ,またこの定理が使われるよ」と論が展開され,同時に計算問題も次々と紹介されていく現状が散見できます.■ ここでは,息継ぎをするべく,算数や中学数学とのつながりに留意しながら証明自体に注目してみま
以前,街中で見かけた光景です.話の展開に多少(かなり)ムリ感もありますが,お付き合いください.■ 図は右側角に空地がある交差点です.迷い犬が手前から向こうへ歩いていました.すると,彼(彼女)は,右折したかったのでしょうか,青線で示した「歩くべき歩道」など全く気にもせず,突然,ピンク色のルートを歩き出したのです!犬の選択を数学的にみると・・・■ 点Pにいた犬は,点Qに向かうため,直線PQ上を歩いたワケです.△AP
中間値の定理を身近な例で再認識しましょう.ネーミングも気になります.マラソンで中間地点と言うように,"中間=真ん中" と受け取るヒト,いないのかな?■ まず翻訳の件から.中間値の定理は,intermediate value theorem の訳なのですが,intermediate には,中間のほかに「~と~の間にある」という意味もあるのでよろしいワケ.⇒ 実は,中間の第一義的意味は,「aとbの間」なのです(複数の事典より).したがって,中間値の定理
過日,’22全国学テの結果が公表されました.学テを巡る議論はいろいろありますが,以前から小学校国語と算数は学力保証の視点で分析すべきと考えています.■ 理由は次の2点です.①平均正答率:比較的高い②正答分布表:グラフが右(高得点側)にかなりずれた正規分布「もどき」形になっている(グラフ:小6算数)したがって,難問を並べた構成ではなく,基礎(の基礎)をチェックをするべく, 通過(すべき)テスト ⇒ 学力保証 の色彩が強い
いまさら筆算?という声もありましょうが,筆算ルール・仕組みの大もとを確認することはムダではないと思います.■ 筆算が"how to指導"に傾く事情は分かるのですが,徹頭徹尾ドリルで押し続けるのはいかがかと感じます.■ 筆算に限らず,計算の原理を確認しておくことは, 直接子どもたちに説明する・しないは別にして,十分意味があります.①指導上の余裕にもつながること ②指導者の"姿勢&奥行き"を見抜く子どもへの対応(小学生でも結構います)1
球の体積Vはrを半径として $$V=\frac{4}{3}πr³$$と示され,中1で習います.■ 球の体積公式(以後,球Vとする)は,中学生には「証明はしない・できないが,計算はさせる」という何とも扱いにくい公式ですね."~と知られている"定理の代表です.正式には高校の数Ⅲで学びますが,数Ⅲは選択科目であり,履修率はおそらく10%未満かと.つまり,大半のヒト(国民)にとって,球Vは,13歳前後で紹介され,後は入試や就職試験等で公式を思い出すくらいの付き合いに
定理や法則はすべて証明した上で次の段階へ進みたいものです.しかし実際は,π(円周率)=3.14159・・・のように,定理・法則の「ユーザー」と割り切るしかない例も少なからずあります.ただ,その「割り切り方」は大切ですね.「詳しくは大学で習うが,ここではおおよその値でいこう」はまずまずとして(※実際は大学でも関心をもつヒト以外はムリ)「ワケはいいから結果は覚えておけ」はワーストかと.円周率って何だっけ
是非はともかく公務員への熱は高いものがあります.今年度の公務員試験(1次)もほぼ終了.既に次年度に向けた準備もスタートしています.■ 高倍率ゆえに,1次はペーパーテストで志望者を絞るしかなく,いきおい問題自体の難易度も上がっています.■ 中でも数的推理・判断推理と称される分野の結果が合否に大きく響いているようです(公務員に必要な資質かどうかは"?"ですが).ここでは,判断推理に焦点を合わせて,数学的思考を深めましょう.■ 上図
数式&公式はだいたい”無色・無味乾燥”です.したがって,そのまま平板に解説する ⇒ 暗記 になりがち.■ 暗記も必要ですが,知的好奇心を抜きにした公式の"暗記術"のみを披露・駆使していますと,いずれ壁にあたります.■ ここでは,暗記カイゼンを図るべく,公式の背景となるイメージ例を紹介します.⇒ イメージと一体で理解する数式・公式 2÷0.1 と 0.1÷2■ 2÷0.1 ですが,20
2次曲線(放物線・だ円・双曲線)は,(直)円すいを平面でcutした際,その切り口として現れます.円すいは3次元,平面は2次元の図形ですから,2次曲線は,3次元と2次元図形の境界で見える曲線ともいえますね.(下図は,東京書籍数学C)■ 今回は,だ円に注目します.■ まず,左図のように,円柱を斜平面で切り取ったときの切り口がだ円になることはよろしいですね.中の図は「かぐや姫とだ円」です.右写真はレストランでよく見かける注文伝票を差し入む器
過日,ある国会議員が財務金融委員会で「三角関数より金融教育を」と発言しチョット話題を呼んでいます.※かつて,鹿児島や大阪の(元)知事も三角関数を例に挙げ持論を展開しております.三角関数は責められる易い?■ 議員は,数学全般を踏まえた上で,時代が要請する金融教育の重要性を説き,その対極に三角関数を置いたのです.2次関数やベクトル,微積分ではありません.なぜ三角関数でしょうか?思い当たる節■ 金融教育の「引き立て役」として,
重心をめぐるあれこれの話題は,かなり「スジ」のよい数学導入ツールになります!重心とは■ 物体の各部に働く重力をただ一つの力で代表させるとき,その作用点を重心Gといいます.(小学館デジタル大辞典による) なぜ重心は一つか■ 高校生や学生に「重心は一つしかない.なぜ?」と問うと,大半がキョトンとした表情をします.「聞いたことがない」「聞かれたことがない」「考えたこともない」.中には「そんなことを考えてもテストに出ない」という
日常生活で距離や面積,重さなど連続量を扱う際,数値は近似値で処理します.しかし,授業・テストとなるとどうでしょう.近似値は"冷遇"されていませんか?■ 授業やテストでは,近似値&近似式が"主役"になることはめったになく,付け足し程度で解説がなされることが多いようです(特にテストで顕著).■ なぜでしょうか?(1)近似値には「2.3ぐらい」「約55%」などのように,答にある種の幅が出来,「数学は答が一つだ!」という原理原則から外れ,子どもたちからは
日常生活で距離や面積,重さなど連続量を扱う際,数値は近似値で処理します.しかし,授業・テストとなるとどうでしょう.近似値は"冷遇"されていませんか?■ 授業やテストでは,近似値&近似式が"主役"になることはめったになく,付け足し程度で解説がなされることが多いようです(特にテストで顕著).■ なぜでしょうか?(1)近似値には「2.3ぐらい」「約55%」などのように,答にある種の幅が出来,「数学は答が一つだ!」という原理原則から外れ,子どもたちからは
一瞬,ナヌッ!とくる問題ってありますね.twitter上で見かけた例やオリジナル問題から,いくつか紹介します.解く・解ける に留まらず,先に繋がることを期待します.Q1 下図で三角形ABCの面積を求めてください. Q2 次の問に答えてください.第30回富山県思考大会(小学生)より Q3 自然数{1,2・・・ 9} のうち,3つの数を用いてできる一番大きい数をかきなさい.同じ数をくり返して使用してもかまい
独特の言い回しが数学にはありますが,その扱われ方はどうでしょう.無意識に「ぞんざい」になっていませんか.■ 教科書をみると,中1数学から記述が急に「大人びて」きます.論理用語や記号が増加して,中には戸惑う学習者が表れても不思議ではありません.<中1の教科書から一部紹介>■ 字面は追うことはできても,何を主張しているのか分からないという声が大半でしょう.関数の定義そのものですから,中1生がナットクするのは難しい!?
新学期ですので数学から少し離れて一般の話題提供をします.テーマは協議(=集まって相談すること)です.協議そのものに何ら疑問はありませんが,フト首を傾げたくなる場面が目に付くようになりました.■ 「ハイ!では,このあとは,いつものように各グループで話し合いをしてください.10分後,代表の人はグループ報告をしてください」「本日の研修会の進め方ですが,①担当指導主事による講義,②各班ごとの協議,➂各班からの報告、④まとめ,の順となります」&nb