動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
シミュレーションで実物を扱わなくても仕事ができる環境を目指す。つまり家に引きこもって外に出なくてもOKな世界。
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させこのアプローチは実数フーリエの時と同じ。
MATLAB,Python,Scilab,Julia比較 第5章 その94【複素フーリエ係数(周期2L)③】
複素フーリエの周期2Lのプログラム化検討。プログラムフローは以前からのものと一緒。一緒の方が比較しやすい。
MATLAB,Python,Scilab,Julia比較 第5章 その93【複素フーリエ係数(周期2L)②】
複素フーリエを周期2πから周期2Lへ。変換の流れは実数フーリエの時と全く同じ。
AivisSpeech Anneliの立ち絵を作ってみた(2.5頭身版)(psdファイル)
はじめに以前、AivisSpeechのAnneliの立ち絵を作成した。デフォルメ版(2~3頭身くらい)もあると使い勝手が良いのでは?と思い作ってみた次第。通常頭身版通常頭身版はこちら動画該当立ち絵を使用した動画はこちら。AivisSpeec...
MATLAB,Python,Scilab,Julia比較 第5章 その92【複素フーリエ係数(周期2L)①】
前回までの複素フーリエは、周期が2πという制約がある。2πを2Lに変換することで任意周期に対応させる。このアプローチは実数フーリエの時と同じ。
AivisSpeech Anneliの立ち絵を作成してみた(psdファイル)
AivisSpeechというむっちゃ優秀な音声合成ソフトウェアが存在します。動画作成に使用したいのだが、現状立ち絵があまり存在しない・・・。というわけで作った!!
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をJuliaで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をScilabで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
任意波形から複素フーリエ係数抽出し、それを元に元波形を複素フーリエ級数で再現をPythonで実施。実数フーリエと同じ結果が得られた。係数は複素数であり、偏角から位相を求めることも可能。
「ブログリーダー」を活用して、KEIさんをフォローしませんか?
動画作成関連のバックナンバー用ページ。立ち絵を作ったり、動画作ったり、アイキャッチ画像作ったりなどを掲載していく。
MATLAB,Python,Scilab,Julia比較するシリーズの第4章。第4章では分類問題で最終的にはニューラルネットワークや最適化アルゴリズムの話だった。第5章はフーリエ解析学から高速フーリエの話がメインとなる。
フーリエ変換を定義。フーリエの積分公式の一部を抜き出す。逆フーリエ変換を定義。フーリエの積分公式にフーリエ変換を代入するだけ。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。区分求積法とリーマン積分について。フーリエの積分公式を導出した。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。さらにそこに加えて、AivisSpeechのアイコン画像を...
PSDToolKitプラグインの導入の仕方を説明。PSDファイルを探してGIMPで内容を確認。GIMPで瞬き用、口パク用のレイヤー編集。
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
区分求積法とリーマン積分について。離散と連続の分け目。フーリエの積分公式を導出した。演算したはずなのに変化しない。つまり変換、逆変換が成立することを示している。
Δωで刻みにしたので、極限を利用して連続系へ。数式上は連続ではあるが、一般的な表現ではない。よって、一般的な表現に書き換える必要がある。
角周波数ωの刻みであるΔωについて説明。Δωを定義することで、離散的な係数算出が連続的な角周波数算出に近づけていっている。
周期2Lの波の数を示すnを周期2πに於ける波の数である角周波数ωに変換。ω=nπ/Lを使用して変換するだけ。これにより少し数式がシンプルになった。
VOICEVOXとAivisSpeechキャラと一緒に!AviUtlを使った動画作成 バックナンバーはじめに以前、AivisSpeechのAnneliというキャラの立ち絵を作成した。ほぼ独自に作成したが、Anneliの画像自体はAivisS...
フーリエに積分公式は複素フーリエ級数と複素フーリエ係数から導出する。変換を想定した式に変換。複素指数関数との積と積分、総和を経由すると元に関数に戻るというイメージが重要。
AviUtlのセットアップと拡張編集Pluginの導入を行った。mp4ファイルの入力と出力の方法を説明。アニメーションgifの対応方法を説明。
分数は割り算の別表現として理解しやすく、逆数を掛けることで計算が簡単になる。これにより、小数の掛け算や割り算の理解が深まる。一次関数の数式をグラフにすることや、グラフから数式を導くことは、データのトレンド分析や物理現象の理解に役立つ。微分は関数の変化率を求める手法であり、数値微分を使って近似的に求めることができる。これにより、物理学や経済学など多くの分野で応用可能。
Youtube動画やブログ記事のアイキャッチ用に作成した、VOCEIVX(四国めたん、ずんだもん、春日部つむぎ)、AivisSpeech(Anneli)の画像たち。Stable Diffusionで生成&少しペン入れ&GIMPによる補正したものになります。
各種フーリエについてまとめてみた。いままでは級数→係数の順番でやっていたため、逆フーリエ変換→フーリエ変換の順番が自然。実際には「フーリエの積分公式を求める」ことになるが、これは逆フーリエ変換そのものである。
各種フーリエについてまとめてみた。いままでは級数→係数の順番でやっていたため、逆フーリエ変換→フーリエ変換の順番が自然。実際には「フーリエの積分公式を求める」ことになるが、これは逆フーリエ変換そのものである。
複素フーリエ周期2LをJuliaで確認。実数フーリエの時と同じ結果が得られた。
つるかめ算の歴史的背景を説明。つるかめ算解説。連立方程式解説。逆行列解説。
多層パーセプトロンの隠れ層のユニット数を2から4に変えたJuliaコードで分類を実施。 大きく2パターンの分類パターンがある。 やや複雑な分類パターンが4ユニットにすることで出てきたもの。
多層パーセプトロンの隠れ層のユニット数を2から4に変えたScilabコードで分類を実施。 大きく2パターンの分類パターンがある。 やや複雑な分類パターンが4ユニットにすることで出てきたもの。
多層パーセプトロンの隠れ層のユニット数を2から4に変えたPythonコードで分類を実施。 大きく2パターンの分類パターンがある。 やや複雑な分類パターンが4ユニットにすることで出てきたもの。
多層パーセプトロンの隠れ層のユニット数を2から4に変えたMATLABコードで分類を実施。 大きく2パターンの分類パターンがある やや複雑な分類パターンが4ユニットにすることで出てきたもの。
多層パーセプトロンの隠れ層のユニット数を増やす。 表現力が上がるはず。 局所最適解にハマらないというより大域最適解に近い局所最適解が増えるというイメージ。 プログラム上の修正点確認。 ベクトル、行列演算ができるため修正範囲は極小。
多層パーセプトロンの隠れ層のユニット数を増やす。 表現力が上がるはず。 局所最適解にハマらないというより大域最適解に近い局所最適解が増えるというイメージ。 プログラム上の修正点確認。 ベクトル、行列演算ができるため修正範囲は極小。
非線形分類をしたが実は問題が発生している。 非線形分類が失敗する原因を特定するため決定境界線と誤差関数の推移をモニタ。 案の定、局所最適解にハマってる。 つまりエポック数を増やしても対策にはならない。 隠れ層のユニット数を増やす、最適化アルゴリズムを使用するのが対策案。
非線形分類が失敗する原因を特定するため決定境界線と誤差関数の推移をモニタ。 案の定、局所最適解にハマってる。 つまりエポック数を増やしても対策にはならない。 隠れ層のユニット数を増やす、最適化アルゴリズムを使用するのが対策案。
非線形分類をしたが実は問題が発生している。 20%くらいの確率で分類ができない。 原因がわかるように誤差関数の推移や決定境界線の推移のアニメーションを見てみる予定。
多層パーセプトロンによる分類をJuliaで実施。 一応ちゃんと分類できた。
多層パーセプトロンによる分類をScilabで実施。 一応ちゃんと分類できた。 等高線による分類表記がうまく行かなかったため、境界線をplotしている。
多層パーセプトロンによる分類をPythonで実施。 一応ちゃんと分類できた。
多層パーセプトロンによる分類をMATLABで実施。 一応ちゃんと分類できた。
多層パーセプトロンによる分類をJuliaで実施。 一応ちゃんと分類できた。
多層パーセプトロンによる分類をScilabで実施。 一応ちゃんと分類できた。 等高線による分類表記がうまく行かなかったため、境界線をplotしている。
多層パーセプトロンによる分類をPythonで実施。 一応ちゃんと分類できた。
多層パーセプトロンによる分類をMATLABで実施。 一応ちゃんと分類できた。
連鎖律の「プログラミングするための最適化」は連鎖律上の共通部分の特定が重要。 連鎖律の共通部分の算出。 共通変数で実際の処理に相当する数式を書き出し。
多層パーセプトロンの重みを決定するための誤差逆伝播法が必要。 誤差逆伝播法の全体像を確認。 出力層の連鎖律と各偏導関数を導出。 隠れ層から誤差関数までの連鎖律を導出。
GUGA 生成AIパスポート試験の問題集を設置。 現状は121問ほど放り込んでいる。問題のカテゴリは現状以下の範囲 第4章 情報リテラシー・基本理念とAI社会原則 第5章 テキスト生成AIのプロンプト制作と実例 問題は随時追加予定。(すべて