chevron_left

メインカテゴリーを選択しなおす

cancel
算額あれこれ https://blog.goo.ne.jp/r-de-r

算額,和算,数学,その他,Julia ときどき R, Python によるコンピュータプログラム,コンピュータ・サイエンス,統計学<br>

r-de-r
フォロー
住所
未設定
出身
未設定
ブログ村参加

2025/04/19

arrow_drop_down
  • 算額(その1640)

    算額(その1640)九岩手県奥州市(旧水沢市佐倉河)胆沢城八幡宮弘化2年(1845)山村善夫:現存岩手の算額,昭和52年1月30日,熊谷印刷,盛岡市.http://www.wasan.jp/yamamura/yamamura.html今有如図03076https://w.atwiki.jp/sangaku/pages/137.html一関博物館和算に挑戦令和5年度出題問題(3)[上級問題](高校生・一般向き)https://www.city.ichinoseki.iwate.jp/museum/wasan/r5/hard.html大円の中に楕円3個と小円を容れる。楕円の面積が最大になるとき,大円の直径を小円の直径で表す術を述べよ。この算額は「算額(その678)」と求めるものが違うだけで,本質的に同じ問題で...算額(その1640)

  • 算額(その1639)

    算額(その1639)三岩手県花巻市太田音羽山清水観世音堂明治25年(1892)山村善夫:現存岩手の算額,昭和52年1月30日,熊谷印刷,盛岡市.http://www.wasan.jp/yamamura/yamamura.html今有如図03076https://w.atwiki.jp/sangaku/pages/137.html楕円の中に,合同な正三角形を3個容れる。楕円の短径が与えられたときに,長径を求める術を述べよ。原文は「𫝆󠄃有如圖画側圓容等三角󠄄三個側圓短徑若干問得側圓長徑術如何」である。山村はなぜか知らないが,外円の中に合同な正三角形を3個と,楕円を2個容れている。「今有如図」は問の通りの図を描いている。問の解釈は今有如図のほうが正しい。計算すると術の通りの答えになる。楕円の長半径,短半径,中心...算額(その1639)

  • はなまるうどん×吉野家 ゆめタウン高松店

    高松市上天神町はなまるうどん×吉野家ゆめタウン高松店はなまるうどん×吉野家ゆめタウン高松店

  • 算額(その1638)

    算額(その1638)長野県埴科郡坂城町諏訪社文化2年(1805)中村信弥「改訂増補長野県の算額」県内の算額1(78)http://www.wasan.jp/zoho/zoho.html長方形の中に円を容れる。長方形の長辺,短辺を「長」,「平」,円によって切り取られる対角線の部分を「帯弦」と呼ぶ。長が185寸,平が80寸のとき,帯弦を求める術を述べよ。対角線と円の交点座標を(x1,y1),(x2,y2)とおき,以下の連立方程式を解く。帯弦はsqrt((x1-x2)^2+(y1-y2)^2)である。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73089ae...算額(その1638)

  • 算額(その1637)

    算額(その1637)宮城県石巻市尾崎宮下久須師神社明治20年(1887)徳竹亜紀子,谷垣美保:2021年度の算額調査,仙台高等専門学校名取キャンパス研究紀要,第58号,p.7-28,2022.https://www.sendai-nct.ac.jp/natori-library/wp/wp-content/uploads/2022/03/kiyo2022-2.pdf正方形の中に楕円と正三角形を容れる。楕円の長径と短径が与えられたとき,正三角形の一辺の長さを得る術を述べよ。図を反時計回りに45°回転させて考える。楕円が内接する正方形の一辺の長さaは「算法助術の公式94」で求めることができる。正三角形の一辺の長さをb,楕円上の正三角形の頂点座標を(x0,y0)とおき,以下の方程式を解く。include("ju...算額(その1637)

  • 算額(その1636)

    算額(その1636)『算法新書巻の二』(千葉胤秀編,文政13年(1830)和算に挑戦平成16年度出題問題(2)[中級問題]&解答https://www.city.ichinoseki.iwate.jp/museum/wasan/h16/normal.html上面が長方形の図のような楔形があります。(1)長,平,刃,高を使って,この楔形の体積を求める公式を作ってください。(2)長の長さ12cm,平の長さ7cm,刃の長さ6cm,高の長さ8cmのとき,(1)で作った公式を用いてこの楔形の体積を求めてください楔形を図のように四角錐2個と三角柱1個に切り分けそれぞれの体積v1,v2を求める。楔形の体積VはV=2v1+v2で,簡約化するとV=平*高*(刃+2*長)/6となる。usingSymPy@syms長,平,刃,...算額(その1636)

  • 算額(その1635)

    算額(その1635)九八鴻巣市三ツ木山王三木神社明治28年(1895)埼玉県立図書館:埼玉県史料集第二集『埼玉の算額』,昭和44年,誠美堂印刷所,埼玉県与野市.キーワード:円3個,外円,楕円2個,正方形#Julia,#Julia,#SymPy,#算額,#和算,#数学外円の中に,大楕円1個,小楕円1個,正方形1個,小円2個を容れる。小楕円の長径が5寸,短径が3寸のとき,小円の直径はいかほどか。1.算法助術の公式94より,長径,短径がp,qの楕円を内接する正方形の一辺aは,a=sqrt((p^2+q^2)/2)である。2.大楕円の短径は正方形の対角線の長さに等しく,√2aである。3.大楕円は小楕円と相似で,相似比=大楕円の短径/小楕円の短径=√2a/qなので,大楕円の長径=小楕円の長径*相似比=p*√2a/q...算額(その1635)

  • 算額(その1634)

    算額(その1634)番外六広野村川嶋埼玉県立図書館:埼玉県史料集第二集『埼玉の算額』,昭和44年,誠美堂印刷所,埼玉県与野市.キーワード:球九個,立方体,3次元#Julia,#Julia,#SymPy,#算額,#和算,#数学立方体の下面に中球4個,その上に大球1個,上の隅に小球4個を容れる。大球の直径が与えられたときに小球の直径を得る術を述べよ。注:問には明記されていないが,大球は立方体の上面に接している。立方体の一辺の長さをa大球の半径と中心座標をr1,(x1,x1,z1);x1=2r2中球の半径と中心座標をr2,(r2,r2,r2);a=4r2小球の半径と中心座標をr3,(r3,r3,a-r3)とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-sou...算額(その1634)

  • 算額(その1633)

    算額(その1633)番外九武州慈恩寺埼玉県立図書館:埼玉県史料集第二集『埼玉の算額』,昭和44年,誠美堂印刷所,埼玉県与野市.キーワード:球4個,正四面体,外接球,3次元#Julia,#Julia,#SymPy,#算額,#和算,#数学外球の中に正四面体と4個の小球を容れる。外球の直径が3寸のとき,小球の直径はいかほどか。小球の半径をr,正四面体の一辺の長さをa,外球の半径と中心座標をR,(0,0,0)とする。R=√6a/4である。また,正四面体の高さABはAB=√6a/3である。AC=2R=AB+2rなので,r=R-√6a/6である。ここでrとRの比をとるとr/R=1/3である。小球の半径rは外球の半径Rの1/3倍である。外球の直径が3寸のとき,小球の直径は1寸である。算額(その1633)

  • 算額(その1632)

    算額(その1632)は,3月1日に公開します。算額(その1632)

  • 手打ちうどん むぎ屋

    高松市香川町川東下手打うどんむぎ屋かなりの細麺,冬季限定メニューのしっぽくうどん手打ちうどんむぎ屋

  • 算額(その1631)

    算額(その1631)~落書き帳「○△□」~940.『算法天生指南』巻之二(その12)http://streetwasan.web.fc2.com/math20.05.03.htmlキーワード:円3個,長方形#Julia,#Julia,#SymPy,#算額,#和算,#数学長方形の中に甲円,乙円,丙円を容れる。甲円の直径が12寸,乙円の直径が9寸のとき,丙円の直径はいかほどか。算額(その1630)で半円だったものが円になっただけで,本質的には同じ問題である。甲円の半径と中心座標をr1,(x1,r1)乙円の半径と中心座標をr2,(r2,r2)丙円の半径と中心座標をr3,(x3,2r1-r3)とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txt...算額(その1631)

  • 算額(その1630)

    算額(その1630)福島県三春町大字七草木字松山(旧七草木村)若草木神社明治11年(1878)~落書き帳「○△□」~927.『算法天生法指南』巻之二(その5)http://streetwasan.web.fc2.com/math20.04.25.2.htmlキーワード:円2個,半円,長方形#Julia,#Julia,#SymPy,#算額,#和算,#数学長方形の中に大半円,中円,小円を容れる。長方形の短辺の長さが与えられたとき,中円と小円の直径を(単に数値として)かけ合わせた数を求める術を述べよ。大円の半径と中心座標をr1,(x1,r1)中円の半径と中心座標をr2,(r2,r2)小円の半径と中心座標をr3,(x3,2r1-r3)とおき,以下の連立方程式を解く。include("julia-source.tx...算額(その1630)

  • 算額(その1629)

    算額(その1629)~落書き帳「○△□」~9.三円の縁http://streetwasan.web.fc2.com/math15.5.16.htmlキーワード:円3個,直線上#Julia,#Julia,#SymPy,#算額,#和算,#数学甲円の平行な2接線の隙間に,乙,丙二円を図のように容れる。三円は互いに外接し,乙円と丙円は,甲円の2接線の1本ずつにそれぞれ接している。甲円,乙円の直径が12寸,9寸のとき,丙円の直径はいかほどか。甲円の半径と中心座標をr1,(x1,r1)乙円の半径と中心座標をr2,(0,r2)丙円の半径と中心座標をr3,(x3,3r1-r3)とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://b...算額(その1629)

  • 算額(その1628)

    算額(その1628)~落書き帳「○△□」~923.『算法天生法指南』巻之二(その1)http://streetwasan.web.fc2.com/math20.04.22.2.htmlキーワード:円3個,直線上,高さ#Julia,#Julia,#SymPy,#算額,#和算,#数学直線上に甲円,乙円,その上に丙円が載っている。甲円,乙円の直径が18寸,15寸,高さが30寸のとき,丙円の直径はいかほどか。甲円の半径と中心座標をr1,(x1,r1)乙円の半径と中心座標をr2,(0,r2)丙円の半径と中心座標をr3,(x3,y3)高さをh;h=y3+r3とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo....算額(その1628)

  • 算額(その1627)

    算額(その1627)長野県下高井郡木島平村往郷水穂神社寛政12年(1800)中村信弥「改訂増補長野県の算額」http://www.wasan.jp/zoho/zoho.htmlキーワード:台形,面積#Julia,#Julia,#SymPy,#算額,#和算,#数学上底が1寸,下底が7寸の台形がある。これを底辺に平行な直線で等しい面積に分割して何人かに分けた。最上段の台形の下底が3寸のとき,人数を求めよ。上底,下底をa,b,最上段の台形の下底をc,台形の高さをh,人数をnとおき,以下の連立方程式を解く。usingSymPy@symsa::positive,b::positive,c::positive,h::integer,n::integereq=n*(a+c)*((c-a)/(b-a))*h/2-(a+b...算額(その1627)

  • 算額(その1626)

    算額(その1626)長野県下高井郡木島平村往郷水穂神社寛政12年(1800)中村信弥「改訂増補長野県の算額」http://www.wasan.jp/zoho/zoho.htmlキーワード:長方形,菱形#Julia,#Julia,#SymPy,#算額,#和算,#数学長方形の中に,大小の矢によって菱形ができている。直長が480寸,直平が360寸,大矢が400,小矢が351寸のとき,菱面を求めよ。注:直長,直平は長方形の長辺と短辺,菱面は菱形の一辺の長さ。大矢,小矢は図のDE,BC三角形ACBにおいて,∠ACBをθとして,第二余弦定理を使う。三角形BDEにおいて,∠BDEを180°-θとして,第二余弦定理を使う。この2つの方程式から,菱面とθを求める。include("julia-source.txt");#j...算額(その1626)

  • やまびこ屋 田村店

    高松市田村町やまびこ屋田村店ランチセットはうどん3メニューから選択とお弁当付きもちもちの太麺,醤油うどんでいただく社会福祉法人やまびこ会Doやまびこ田村事業所クリーンエコーズ障害者向けサービス&支援組織が運営やまびこ屋田村店

  • 算額(その1625)

    算額(その1625)長野県下高井郡木島平村往郷水穂神社寛政12年(1800)中村信弥「改訂増補長野県の算額」http://www.wasan.jp/zoho/zoho.htmlキーワード:円多数,正三角形,斜線#Julia,#Julia,#SymPy,#算額,#和算,#数学正三角形の中に斜線と数個の等円を容れる。左右の等円の個数が与えられたとき,等円の直径を求める術を述べよ。正三角形の一辺の長さをa斜線と正三角形の右側の斜辺との角度をθ等円の個数と直径をm,n,rとおき,以下の連立方程式を解く。eq1,eq2は斜辺の長さを表す式がaに等しいというものである。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de...算額(その1625)

  • 本格手打うどん 麺むすび

    高松市多肥下町本格手打うどん麺むすびうどん屋なのに天ぷら・天丼・カツ丼などが大人気という変わった(?)店カツ丼も頼んだ本格手打うどん麺むすび

  • 算額(その1624)

    算額(その1624)長野県上水内牟礼村牟礼渋薬師堂嘉永2年(1849)大久保善賢氏保管中村信弥「改訂増補長野県の算額」http://www.wasan.jp/zoho/zoho.htmlキーワード:球5個,回転楕円体,3次元#Julia,#Julia,#SymPy,#算額,#和算,#数学回転楕円体の中に,甲球2個,乙球3個を容れる。回転楕円体の長径と短径が与えられたとき,甲球の直径を得る術を述べよ。回転楕円体の長径,短径を2a,2b甲球の半径と中心座標をr1,(0,0,z1)乙球の半径と中心座標をr2,(b-r2,0,0)甲球と回転楕円体のx-z平面上の交点座標を(x0,0,z0)とおき,以下の連立方程式を解く。まず,eq1を解きr2を求める。次いで,eq3,eq4,eq5を解き,z1,x0,z0を求める...算額(その1624)

  • 算額(その1624

    算額(その1624)キーワード:#Julia,#Julia,#SymPy,#算額,#和算,#数学回転楕円体の中に,甲球2個,乙球3個を容れる。回転楕円体の長径と短径が与えられたとき,甲球の直径を得る術を述べよ。回転楕円体の長径,短径を2a,2b甲球の半径と中心座標をr1,(0,0,z1)乙球の半径と中心座標をr2,(b-r2,0,0)甲球と回転楕円体のx-z平面上の交点座標を(x0,0,z0)とおき,以下の連立方程式を解く。まず,eq1を解きr2を求める。次いで,eq3,eq4,eq5を解き,z1,x0,z0を求める。最後に,eq2を解きr1を求める。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/...算額(その1624

  • 算額(その1623)

    算額(その1623)~落書き帳「○△□」~392.○△□の新算額(その5)http://streetwasan.web.fc2.com/math18.2.1.htmlキーワード:円4個,外円,円弧#Julia,#Julia,#SymPy,#算額,#和算,#数学算額(その1622)は,もともとは(注)以下のようなものである。外円の中に,甲円1個,乙円1個,丙円2個を容れる。外円の直径が与えられたとき,丙円の直径は甲円の直径により変化する。丙円の直径が最大になるのはどのようなときか。また,そのときの直径ははいかほどか。注:和算の解法ー美しい幾何の問題を解く楽しみー,米山忠興著,開成出版2012)外円の半径と中心座標をR,(0,0)甲円の半径と中心座標をr1,(0,R-r1)乙円の半径と中心座標をr2,(0,r...算額(その1623)

  • 算額(その1622)

    算額(その1622)~落書き帳「○△□」~392.○△□の新算額(その5)http://streetwasan.web.fc2.com/math18.2.1.htmlキーワード:円4個,外円,円弧#Julia,#Julia,#SymPy,#算額,#和算,#数学外円の中に,甲円1個,乙円1個,丙円2個を容れる。外円の直径が与えられ,甲円,乙円,丙円の中心を結ぶと直角三角形になるとき,丙円の直径はいかほどか。外円の半径と中心座標をR,(0,0)甲円の半径と中心座標をr1,(0,R-r1)乙円の半径と中心座標をr2,(0,r2-R)丙円の半径と中心座標をr3,(x3,y3)外円と乙円の交点座標を(x0,y0)とおき,以下の連立方程式を解く。注:「甲円,乙円,丙円の中心を結ぶと直角三角形になる」という条件をeq4...算額(その1622)

  • 根っこ 空港通り店

    高松市鹿角町セルフ本格手打ち根っこ空港通り店やや細麺根っこ空港通り店

  • 算額(その1621)

    算額(その1621)京都市東山区安井金比羅宮奉納算題四季詠の五月問題平成元年(1989)正月奉納絵馬http://www.wasan.jp/kyoto/yasuikonpira2.html大橋彪正:和算を用いた数学教育https://www.st.nanzan-u.ac.jp/info/gr-thesis/2019/koto/pdf/16ss056.pdfキーワード:九曜紋#Julia,#SymPy,#算額,#和算,#数学幟を染めること問:定紋の図を見るに九曜也。惣径二尺あるとき大小の円径いかに答:大円径八寸九分余術:天=(√2+1)^2;小円径=((√(天+1)-1)/天)*惣径;大円径=惣径-2小円径注:惣径=大円径+2*小円径である。惣径をK大円の半径と中心座標をR,(0,0)小円の半径と中心座標を...算額(その1621)

  • 算額(その1620)

    算額(その1620)~落書き帳「○△□」~720.n曜紋の芯http://streetwasan.web.fc2.com/math19.10.11.html-梅鉢算額(その682)愛媛県大洲市新谷法眼寺寛政6年(1794)11月http://www.wasan.jp/ehime/hogenji.html埼玉県比企郡鳩山町円正寺不動堂文政11年(1828)8月http://www.wasan.jp/saitama/ensyoji.html埼玉県加須市大越六間天神社明治14年(1881)https://gunmawasan.web.fc2.com/k-n-mondai.html-七曜紋家紋,神紋として多く使われるが算額としては未見東京鳥越神社、兵庫県名草神社https://irohakamon.com/kam...算額(その1620)

  • 算額(その1619)

    算額(その1619)福島県福島郷社稲荷社明治22年(1889)~落書き帳「○△□」~600.第9回【街角の問題】http://streetwasan.web.fc2.com/math19.5.30.htmlキーワード:円4個,正方形,対角線,斜線2本#Julia,#SymPy,#算額,#和算,#数学正方形の中に対角線(方斜)1本,斜線2本を引き,区画された領域に等円4個を容れる。対角線の長さが54.56寸のとき,等円の直径はいかほどか。ページの作者は,『原文では何故「方斜」を、それも「五十四寸五分六厘」という中途半端な数値で与えているのか。解いてみれば分からなくもありませんが、ここでは不問としておきましょう。』と言っている。ここでは普通に(?),方斜ではなく正方形の一辺(方面)を与えて等円の直径を求めるこ...算額(その1619)

  • 算額(その1618)

    算額(その1618)福島県白河市南湖南湖神社昭和58年(1983)http://www.wasan.jp/fukusima/nanko.htmlキーワード:円5個,外円,楕円,面積#Julia,#SymPy,#算額,#和算,#数学外円の中に楕円1個と等円4個を容れる。等円の面積が与えられたとき,赤積を求めよ。外円の半径と中心座標をR,(0,0)等円の半径と中心座標をr,(R-r,0),(0,R-r)楕円の長半径,短半径と中心座標をa,b,(0,0)とおく。a=R,b=R-2rである。また,楕円内の等円は曲率円なので,r=b^2/aである。等円の面積=π*r^2赤積=外円の面積-楕円の面積-2×等円の面積=π*R^2-π*a*b-2π*r^2include("julia-source.txt");#juli...算額(その1618)

  • 算額(その1617)

    算額(その1617)山形県鶴岡市大山椙尾神社文政元年8月http://www.wasan.jp/yamagata/sugio.htmlキーワード:円2個,円弧,直角三角形#Julia,#SymPy,#算額,#和算,#数学外円の一部の円弧(弓形)の中に楕円を容れる。楕円の長径が6寸,短径が3寸,矢が3.1寸のとき外円の直径はいかほどか。外円の半径と中心座標をR,(0,0)楕円の半径と中心座標をa,b,(0,R-矢+b)円弧と楕円の接点座標を(x0,y0)とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73089ae813cfu...算額(その1617)

  • 算額(その1616)

    算額(その1616)山形県新庄市堀端町戸澤神社(戸沢神社)文政元年(1818)http://www.wasan.jp/yamagata/tozawa.htmlキーワード:円2個,円弧,直角三角形#Julia,#SymPy,#算額,#和算,#数学直角三角形の中に,円弧,大円,小円を容れる。鈎,股が与えられたとき,小円の最小値を求めよ。鈎,股をそのまま変数名とし,弦を前もって求めておく。大円の半径と中心座標をr1,(r1,r1)小円の半径と中心座標をr2,(r1+2sqrt(r1*r2),r2)円弧の半径と中心座標をR,(x,y)とおき,以下の連立方程式を立てる。算額の図では,円弧は股に一点で交差または外接している。そのためには円弧の中心のx座標が股の長さに等しくなければならない。もしその条件が満たされないと...算額(その1616)

  • セルフうどん ぼっこ屋 川東店

    高松市香川町川東下セルフうどんぼっこ屋川東店やや細麺セルフうどんぼっこ屋川東店

  • 算額(その1615)

    算額(その1615)八戸市北糠塚光龍寺昭和54年(1979)8月18日桑原秀夫復元奉納http://www.wasan.jp/aomori/koryuji.htmlキーワード:正20面球#Julia,#SymPy,#算額,#和算,#数学直径がRの球の表面上に互いに等距離になるように12個の点を配置し,それらを結ぶと合同な曲面が20個できる。これを正20面球と呼ぶ。辺の長さはいかほどか。球面上の12頂点は,この球に内接する一辺の長さがaの正20面体である。球の半径はR=(sqrt(10+2√5)/4)*aなので,a=R/(sqrt(10+2√5)/4)である。正20面体の隣り合う頂点をA,B,重心をOとしたとき,∠AOB=θ=63.4349488229220°である。usingSymPy@symsR,a,θ...算額(その1615)

  • 算額(その1614)

    算額(その1614)八戸市北糠塚光龍寺昭和54年(1979)8月18日桑原秀夫復元奉納http://www.wasan.jp/aomori/koryuji.htmlキーワード:正12面球#Julia,#SymPy,#算額,#和算,#数学直径がRの球の表面上に互いに等距離になるように20個の点を配置し,それらを結ぶと合同な曲面が12個できる。これを正12面球と呼ぶ。辺の長さはいかほどか。球面上の20頂点は,この球に内接する一辺の長さがaの正12面体である。球の半径はR=(√15+√3)/4*aなので,a=(√15-√3)/3*Rである。正12面体の隣り合う頂点をA,B,重心をOとしたとき,∠AOB=θ=acos(√5/3)=41.8103148957786°である。usingSymPy@symsR,a,θe...算額(その1614)

  • 算額(その1613)

    算額(その1613)八戸市北糠塚光龍寺昭和54年(1979)8月18日桑原秀夫復元奉納http://www.wasan.jp/aomori/koryuji.htmlキーワード:正8面球#Julia,#SymPy,#算額,#和算,#数学直径がRの球の表面上に互いに等距離になるように6個の点を配置し,それらを結ぶと合同な曲面が8個できる。これを正8面球と呼ぶ。辺の長さはいかほどか。球面上の6頂点は,この球に内接する一辺の長さがaの正8面体である。球の半径はR=a/√2なので,a=√2Rである。正8面体の隣り合う頂点をA,B,重心をOとしたとき,∠AOB=θ=90°である。usingSymPy@symsR,a,θeq1=R-(√Sym(2)/2)*aeq2=2R^2-2R^2*cos(θ)-(√Sym(2)R)...算額(その1613)

  • 算額(その1612)

    算額(その1612)八戸市北糠塚光龍寺昭和54年(1979)8月18日桑原秀夫復元奉納http://www.wasan.jp/aomori/koryuji.htmlキーワード:正6面球#Julia,#SymPy,#算額,#和算,#数学直径がRの球の表面上に互いに等距離になるように8個の点を配置し,それらを結ぶと合同な曲面が6個できる。これを正6面球と呼ぶ。辺の長さはいかほどか。球面上の8頂点は,この球に内接する一辺の長さがaの正6面体である。球の半径はR=√(3a^2/4)なので,a=2√3R/3である。正6面体の隣り合う頂点をA,B,重心をOとしたとき,∠AOB=θとおく。三角形AOBでOA,OB,∠AOBで第二余弦定理を適用すると,θ=acosd(1/3)=70.5287793655093である。us...算額(その1612)

  • 算額(その1611)

    算額(その1611)青森県八戸市北糠塚光龍寺昭和54年(1979)8月18日桑原秀夫復元奉納http://www.wasan.jp/aomori/koryuji.htmlキーワード:正4面球#Julia,#SymPy,#算額,#和算,#数学直径がRの球の表面上に互いに等距離になるように4個の点を配置し,それらを結ぶと合同な曲面が4個できる。これを正4面球と呼ぶ。辺の長さaはいかほどか。球面上の4頂点は,この球に内接する一辺の長さがaの正4面体である。球の半径はR=a*(√6/4)なので,a=R*(2√6/4)である。正4面体の隣り合う頂点をA,B,重心をOとしたとき,∠AOB=θとおく。三角形AOBでOA,OB,∠AOBで第二余弦定理を適用すると,θ=acosd(-1/3)=109.47122063449...算額(その1611)

  • 池上製麺所

    高松市香川町川東下池上製麺所細麺,いりこだしルミばあちゃんが人気だった。元気なのかな。池上製麺所

  • 算額(その1610)

    算額(その1610)福島県田村市船引町門鹿宮林古室神社明治16年(1883)頃http://www.wasan.jp/fukusima/komuro.htmlキーワード:直角三角形,正五角形#Julia,#SymPy,#算額,#和算,#数学長方形の中に大小の正方形を容れ,長方形の一つの頂点と大小の正方形の頂点を結ぶ斜線を引く。長方形の長辺が51寸,小正方形の一辺の長さが9寸のとき,長方形の短辺の長さはいかほどか。大正方形,小正方形の一辺の長さをa,b長方形の長辺,短辺の長さをx,yとおき,以下の方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b...算額(その1610)

  • 算額(その1609)

    算額(その1609)福島県田村市船引町堀越明神前明石神社(堀越明宮)明治11年(1878)http://www.wasan.jp/fukusima/horikosiakasi.htmlキーワード:直角三角形,正五角形#Julia,#SymPy,#算額,#和算,#数学直角三角形の中に弦(斜辺)と股(底辺)を共有し,残りの頂点が鈎(高さ)上にある正五角形を容れる。正五角形の一辺の長さが与えられたとき,股,鈎はいかほどか。正五角形の一辺の長さをa,正五角形を内接する円の半径をrとする。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73089ae813cfusi...算額(その1609)

  • 算額(その1608)

    算額(その1608)福島県田村市船引町堀越明神前明石神社(堀越明宮)明治11年(1878)http://www.wasan.jp/fukusima/horikosiakasi.html~落書き帳「○△□」~696.第10回「街角の問題」―堀越村明宮神社算額(その3)http://streetwasan.web.fc2.com/math19.9.27.htmlキーワード:円7個,直線上#Julia,#SymPy,#算額,#和算,#数学直線上に,東円1個,西円2個,南円1個,北円3個を載せる。東円の直径が5寸のとき北円の直径はいかほどか。注:horikosiakasi.htmlの写真では,「北円径一寸四分□東円径幾何」とあり,「答曰東円径五寸」となっている。東円の半径と中心座標をr1,(0,2r3-r1)西円...算額(その1608)

  • 高松市鹿角町 中西うどん

    高松市鹿角町中西うどん看板も骨太の太麺。女将さんがこっそり(?)出し始めた細麺もある。高松市鹿角町中西うどん

  • 算額(その1607)

    算額(その1607)宮城県石巻市尾崎宮下久須師神社明治20年(1887)徳竹亜紀子,谷垣美保:2021年度の算額調査,仙台高等専門学校名取キャンパス研究紀要,第58号(2022),p.7-28.https://www.sendai-nct.ac.jp/natori-library/wp-content/uploads/2022/03/kiyo2022-2.pdfキーワード:円2個,円弧2個,斜線#Julia,#SymPy,#算額,#和算,#数学交差する円弧の中に等円を2個と共通接線を入れる。短径,長径,等円の直径が与えられたとき,共通接線と円弧の交点間の距離(斜の長さ)を求める術を述べよ。等円の半径をr円弧を構成する円の半径と中心座標をR,(0,0)等円の半径と中心座標をr,(x,y)共通接線と円弧の交点...算額(その1607)

  • 算額(その616)改訂版

    算額(その616)改訂版より鮮明な写真により,大円の中の小円は互いに外接しているのではないようなので,算額(その616)の改訂版を書く。福島県白河市明神境明神万延元年(1860)http://www.wasan.jp/fukusima/sakai1L2.html拡大図http://www.wasan.jp/fukusima/sakai1-2.png団扇の中に小円1個と長方形が内接し,長方形の中に大円2個,小円7個が入っている。小円の径を1としたとき,団扇の径はいかほどか。団扇(外円)の半径と中心座標をR,(R0,0);R0<0大円の半径と中心座標をr2,(r2-r,0),(r-r2,0)小円の半径と中心座標をr,(x,r2-r),(2r2-2r,0),(0,0)長方形の右上の頂点座標は(2r2-r,r2)...算額(その616)改訂版

  • 算額(その1606)

    算額(その1606)長野県須坂市とある廃寺元治元年(1864)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:直角三角形,円弧,正方形,最大値#Julia,#SymPy,#算額,#和算,#数学直角三角形の中に円弧を描き,頂点が円弧と斜辺に接する正方形を容れる。股が一定のとき,正方形の一辺の長さは鈎の長さに応じて変化する。正方形の一辺の長さが最大になるのはどのようなときか。鈎,股をそのまま変数名とする。正方形の一辺の長さをa,左下の頂点の座標を(x,0)とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b...算額(その1606)

  • 算額(その1605)

    算額(その1605)新潟県長岡市悠久山享和元年(1801)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:#Julia,#SymPy,#算額,#和算,#数学外円の中に,弦,矢,斜線,甲円,乙円を容れる。外円の直径が与えられ,「弦-矢」が最大になるとき,乙円の直径はいかほどか。弦,矢をそのまま変数名とする。外円の半径と中心座標をR,(0,0)甲円の半径と中心座標をr1,(0,R-矢+r1),(0,R-r1)乙円の半径と中心座標をr2,(x2,R-矢/2)斜線と外円の交点座標を(x0,y0)とおき,以下の連立方程式を解く。まず初めに,「『弦-矢』が最大になるとき」という条件を解決する。弦=2sqrt(R^2-(R-矢)^2)なので,差=2sqrt(R^2-(R...算額(その1605)

  • 算額(その1604)

    算額(その1604)大阪住吉神社弘化3年(1846)福田理軒:順天堂算譜,明治6年(1873)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.福島県郡山市中田町上石国見山稲荷明治11年(1878)五輪教一:黄金比の眠るほこら,日本評論社,2015年7月10日キーワード:菱形2個,面積#Julia,#SymPy,#算額,#和算,#数学図のように,直線l上に一辺の長さがaの正方形ABCDが固定されている。同じ大きさの動く正方形EFGHが直線(上に載っていて,辺CDに接してながら回転していて,l上の接点をE,CD上の接点をFとする。頂点Hを通りlに垂直な動く直線とlとの交点をP,2点B,Gを通る直線との交点をTとする。PTの最大値をaで表せ。TP=TH+aTH/BH=GJ/...算額(その1604)

  • 算額(その1603)

    算額(その1603)松村吉徳:算法闕疑抄寛文元年(1661)深川英俊:例題で知る日本の数学と算額,p.29,森北出版株式会社,1988年2月20日.キーワード:八角切灯籠,体積#Julia,#SymPy,#算額,#和算,#数学立方体の8個の角を切り取る。できる面が正三角形と正八角形になるような立体(八角切灯籠)を作った。各辺の長さが12のとき,この立体の体積を求めよ。立体の辺をaとすれば,元の立方体の一辺の長さはa+2a/√2=a+√2aである。usingSymPy@symsab=a/√Sym(2)b >printlnsqrt(2)*a/2#三角錐の底面積S=b^2/2S >printlna^2/4#三角錐の体積V=S*b/3V >printlnsqrt(2)*a^3/24V(a=>12).evalf()...算額(その1603)

  • 算額(その1602)

    算額(その1602)群馬県みどり市大間々町鎮守社文政4年(1821)http://www.wasan.jp/okayama/katayamahiko.html深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:菱形2個,面積#Julia,#SymPy,#算額,#和算,#数学菱形の中に正方形を容れる。菱形の面積から正方形の面積を差し引いた面積(黒積と呼ぼう)を考える。菱形の一辺の長さが与えられたとき,黒積が最大となるときの正方形の一辺の長さはいかほどか。菱形の一辺の長さをa正方形の対角線の長さを2b正方形の一辺の長さをxとおき,以下の方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://bl...算額(その1602)

  • 手打ちうどん たも屋 林店

    高松市林町手打ちうどんセルフたも屋林店香川大学工学部の近くなので,昼時はたくさんのお客さんが列をなす並んでいる人25,6人。食べている人70人ほど。これほどの人が店内にいるのは,並み居るうどん屋でも数少ないと思う手打ちうどんたも屋林店

  • 手打ちうどん 上田

    高松市大田上町手打ちうどん上田やや細麺,しっぽくうどん,牛肉を上に被せ,具材がでかい,甘くて旨い現金払いのみ手打ちうどん上田

  • 算額(その1601)

    算額(その1601)宮城県角田市小田字斗蔵斗蔵寺明治42年(1909)https://tajin.shiriagari.com/framepage5000.htm(リンク先の左のインデックスから選択)キーワード:円5個,最大値#Julia,#SymPy,#算額,#和算,#数学交差する大円2個の隙間に,中円1個,小円2個を容れる。大円の直径が10寸のとき,小円の直径が最大になるのはどのようなときか,そしてそのときの小円の直径はいかほどか。大円の半径と中心座標をr1,(r1-r2,0)中円の半径と中心座標をr2,(0,0)小円の半径と中心座標をr3,(0,r2+r3)とおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://...算額(その1601)

  • 算額(その1600)

    算額(その1600)宮城県角田市小田字斗蔵斗蔵寺明治42年(1909)https://tajin.shiriagari.com/framepage5000.htm(リンク先の左のインデックスから選択)キーワード:二等辺三角形,正方形2個#Julia,#SymPy,#算額,#和算,#数学二等辺三角形内に大小の正方形を容れる。二等辺三角形の高さが25寸のとき,小正方形が最大になるときの二等辺三角形の底辺の長さと小正方形の一辺の長さはいかほどか。二等辺三角形の高さをh,底辺の長さを2a大正方形の一辺の長さを2b小正方形の一辺の長さを2cとおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-...算額(その1600)

  • 算額(その1599)

    算額(その1599)宮城県角田市小田字斗蔵斗蔵寺明治42年(1909)https://tajin.shiriagari.com/framepage5000.htm(リンク先の左のインデックスから選択)キーワード:直角三角形,面積,最大値#Julia,#SymPy,#算額,#和算,#数学直角三角形の中に,図のように正方形を容れる。正方形の一辺の長さが12寸のとき,黒積が最大になるのはどのようなときか。またその最大値はいかほどか。正方形の一辺の長さをa,黒積の直角三角形の頂点を(0,0),(x,0),(0,y)鈎,股,弦をそのまま変数名とする。証明はそんなに難しいものでもないが,直感でわかり,またそれが正しいことも簡単に示すことができる。黒積が最大になるのは黒積が直角二等辺三角形のときである。斜辺が12寸のと...算額(その1599)

  • 算額(その1598)

    算額(その1598)宮城県角田市小田字斗蔵斗蔵寺明治42年(1909)https://tajin.shiriagari.com/framepage5000.htm(リンク先の左のインデックスから選択)キーワード:直角三角形,正方形,最大値#Julia,#SymPy,#算額,#和算,#数学直角三角形の中に中鉤を引き,中鉤と弦と股上に頂点を持つ正方形を容れる。股が15寸のとき,正方形の一辺が最長になるときその長さはいかほどか。鈎,股をそのまま変数名とする。中鈎上の正方形の頂点座標を(x,y)弦上の中鈎の脚の座標を(x0,y0)とおき,以下の連立方程式を解き,x,y,x0,y0を求める。それぞれは鈎,股の関数になる。include("julia-source.txt");#julia-source.txtソース...算額(その1598)

  • 算額(その1597)

    算額(その1597)宮城県角田市小田字斗蔵斗蔵寺明治42年(1909)https://tajin.shiriagari.com/framepage5000.htm(リンク先の左のインデックスから選択)深川英俊,トニー・ロスマン:聖なる数学:算額,p.116,森北出版株式会社,2010年4月22日.キーワード:面積,最大値#Julia,#SymPy,#算額,#和算,#数学直角三角形において,鈎を一辺として,股の一部を共有する正方形を描く。弦と正方形の一辺の交点を一つの頂点とする直角三角形の面積(黒積と呼ぼう)を考える。股が12寸のとき,黒積が最大となるときの鈎はいかほどか。鈎,股,黒積をそのまま変数名とする。正方形の一辺と弦の交点座標を(鈎,y)とする。include("julia-source.txt")...算額(その1597)

  • MacOS: RDatasets を使えるようにする

    macOSのJulia--Version1.11.3あたりでRDatasetsが使えないという問題の回避法。~/.julia/packages/TimeZones/@@@@@/src/types/timezone.jlの,41行目のTimeZoneから,何もせずに直帰する。'@@@@@'はバージョンにより異なるディレクトリになるので,その都度調整が必要。functionTimeZone(str::AbstractString,mask::Class=Class(:DEFAULT))return#####この一行を加えるtz,class=get(_TZ_CACHE,str)do:MacOS:RDatasetsを使えるようにする

  • 算額(その1596)

    算額(その1596)三重県伊賀市上野東町菅原神社(上野天神宮)嘉永7年(1854)深川英俊,トニー・ロスマン:聖なる数学:算額,p.116,森北出版株式会社,2010年4月22日.キーワード:体積,級数#Julia,#SymPy,#算額,#和算,#数学底面が辺の長さaの正三角形で高さもaである大きな角錐を逆さにして酒を満たし,その体積をV0とする。これより1石2斗5升(125升)をくみ出して残りを2倍にする。次に同じように125升をくみ出して残りを2倍にする。こうして10回目に125升をくみ出すと残りが無くなった。さて,この容器の体積Vを求めよう。また1升は一辺が4.0172寸の立方体としたとき,aを寸で求めよ。深川英俊,トニー・ロスマン:聖なる数学:算額,p.114,森北出版株式会社,2010年4月22...算額(その1596)

  • 算額(その1595)

    算額(その1595)秋田県仙北郡角館町熊野神社安政5年(1858)深川英俊,トニー・ロスマン:聖なる数学:算額,p.114,森北出版株式会社,2010年4月22日.キーワード:俵積み#Julia,#SymPy,#算額,#和算,#数学N個の俵がある。これを2通りの方法で積むことができた。1つは上が19個で下がm個の台形状になり、次は上が6個で下がn個の台形状である。このときN,m,nを求めてみよう。以下の方程式を立てる。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73089ae813cfusingSymPy@symsm::positive,n::posi...算額(その1595)

  • 算額(その1594)

    算額(その1594)深川英俊,トニー・ロスマン:聖なる数学:算額,p.114,森北出版株式会社,2010年4月22日.キーワード:#Julia,#SymPy,#算額,#和算,#数学図に示すような正12角形の24本の対角線の長さの和が与えられたとき,内部にできる小さな正12角形の一辺の長さを求める術を述べよ。外側の正12角形が内接する円の直径をR内側の正12角形が内接する円の直径をrとすると,a=c*tan(15°),c=(a+b)*tan(15°)対角線の長さの和をlとすると,l=12*2*(a+b)より,以下の連立方程式を解き,a,bを求める。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/a...算額(その1594)

  • 算額(その1593)

    算額(その1593)長野県諏訪神社文化2年(1805)深川英俊,トニー・ロスマン:聖なる数学:算額,p.114,森北出版株式会社,2010年4月22日.キーワード:円1個,長方形,対角線#Julia,#SymPy,#算額,#和算,#数学長方形の中に円と対角線を引く。長方形の長辺ABと短辺BCが与えられたとき,円によって切り取られる対角線の長さPQを求めよ。円の半径をra=AB,b=BC=2rP,Qの座標を(x1,y1),(x2,y2)θ=∠BDCとおき,以下の連立方程式を解く。include("julia-source.txt");#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73089ae813cfusin...算額(その1593)

  • MacOS: ファイル・ディレクトリの変更日の時刻表示フォーマットの設定

    MacOSSequoia15.xで,ディレクトリ表示中のファイル・ディレクトリの変更日の時刻表示が12時制になているのを24時制にする方法ターミナルで24時間制を強制する方法1.ターミナルを開く(「アプリケーション」→「ユーティリティ」→「ターミナル」)2.以下のコマンドを入力し、Enterを押すdefaultswriteNSGlobalDomainAppleICUForce24HourTime-booltrue3.Finderを再起動killallFinderまたは、ログアウト&ログインすることで設定を適用できます。現在の設定を確認する設定が適用されているか確認するには、以下のコマンドを実行してください。defaultsreadNSGlobalDomainAppleICUForce24HourTimeこ...MacOS:ファイル・ディレクトリの変更日の時刻表示フォーマットの設定

  • 算額(その1592)

    算額(その1592)岡山県瀬戸内市長船町土師宮森片山日子神社明治6年(1873)深川英俊,トニー・ロスマン:聖なる数学:算額,p.113,森北出版株式会社,2010年4月22日.キーワード:円7個,正三角形2個,正六角形#Julia,#SymPy,#算額,#和算,#数学正方形の中に正三角形1個,大円1個,中円2個,小円1個を容れる。中円の半径を大円の半径で表わせ。正方形の一辺の長さをa大円の半径と中心座標をr1,(0,r1)中円の半径と中心座標をr2,(a/2-r2,a-r2);小円の半径と中心座標をr3,(0,a-r3)とおく。r1,r3は簡単に計算できる。r1=√3a/6r3=(a-√3a/2)/2求めるのが面倒なのはr2だけなので,以下の方程式を解く。ちなみにtan(15°)=2-√3である。inc...算額(その1592)

  • 琴平町 虎屋

    琴平町本家虎屋かけうどんを注文した手打ち麺,コシあり,ちょっとしょっぱ目(甘くない)琴平町虎屋

  • 算額(その1591)

    算額(その1591)岡山県瀬戸内市長船町土師宮森片山日子神社明治6年(1873)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:円7個,正三角形2個,正六角形#Julia,#SymPy,#算額,#和算,#数学正六角形の中に対角線を6本引いて正三角形を2個作り,内部にできる小さな正六角形に内接する大円と,正三角形の一辺と正六角形の二辺に接する小円を6個容れる。大円の半径が10寸のとき,小円の半径はいかほどか。正六角形の一辺の長さをR大円の半径と中心座標をr1,(0,0)小円の半径と中心座標をr2,(0,r1+r2)とする。大円の直径は正六角形の一辺の長さと等しい。小円が内接している二等辺三角形の高さは大円の半径に等しい。小円と大円の間には(r1-r2)*co...算額(その1591)

  • 算額(その1590)

    算額(その1590)秋田県角館町熊野神社嘉永2年(1849)秋田県仙北市角館町西長野熊野神社嘉永2年(1849)http://www.wasan.jp/akita/kakunodatekumano1.html深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日,P.109.キーワード:円,内接三角形#Julia,#SymPy,#算額,#和算,#数学外円の中に三角形ABCが内接している。頂点Cから対辺BCに垂線CHを下ろす。BC,AC,CHが与えられたとき,外円の直径を求める術を述べよ。「算法叙述の公式25」h=a*b/2rの式変形である。外円の半径をrBC,AC,CHをa,b,hとおく。Cから外接円の中心Oを通る補助線を引き,円周上の交点をDとする。∠HBC=∠ADCなので...算額(その1590)

  • 琴平町 うどん吉田屋

    琴平町うどん吉田屋かやくうどんやや平べったい,乾麺かな?こしはある琴平町うどん吉田屋

  • 算額(その1589)

    算額(その1589)江戸愛宕神社文政13年(1830)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:正方形4個#Julia,#SymPy,#算額,#和算,#数学辺の長さがa,b,c,dの4個の正方形が頂点を共有して図のように並んでいる。a,b,cが与えられたとき,dを求める術を述べよ。この特殊な場合が左右対称な「算額(その657)」である。思いつくのは,第二余弦定理の適用であるが,β=π-αではあるが,変数の個数が多くて,以下の連立方程式は解けなかった。include("julia-source.txt")#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b730...算額(その1589)

  • 算額(その1588)

    算額(その1588)岡山県瀬戸内市長船町土師宮森片山日子神社明治6年(1873)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:#Julia,#SymPy,#算額,#和算,#数学扇面に大円2個を容れ,大円の共通接線と扇端に接するように小円1個を容れる。弦の長さと小円の直径が与えられたとき,大円の直径はいかほどか。注1:深川は「弦の長さが与えられたとき大円と小円の直径を求めよ」と書きながら,弦の長さの他に小円の直径も与えられたとして大円の直径を求めている。注2:問題では扇の開いた角度に関しては条件がない。図はそのようにはなっていないが,「大円が扇骨に接する」ようにしてもよいだろう。ここでは,開いた角度を120°で描いた。また,要から地紙までの長さ(骨の見える...算額(その1588)

  • 算額(その1587)

    算額(その1587)岡山県瀬戸内市長船町土師宮森片山日子神社明治6年(1873)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:円の区分法#Julia,#SymPy,#算額,#和算,#数学直径が2r=100mの円形の畑がある。この畑を図のように長さがtの線分で分割し,面積を5等分したい。その1つは辺の長さがdの正方形である。円周率を3.16(円積率が0.79)として,t,dを求める術を述べよ。以下の連立方程式を解く。include("julia-source.txt")#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73089ae813cfusingSymPy@...算額(その1587)

  • 今年は来ました

    ミカン・レストラン:メジロ様ご来店今年は来ました

  • 琴平町 宗家 金毘羅饂飩 狸屋

    琴平町宗家金毘羅饂飩狸屋レストラン狸屋雰囲気のある店「金比羅饂飩」がいちおしメニュー中細麺琴平町宗家金毘羅饂飩狸屋

  • 算額(その1586)

    算額(その1586)岡山県瀬戸内市長船町土師宮森片山日子神社明治6年(1873)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:直角三角形の区分法#Julia,#SymPy,#算額,#和算,#数学AC=30m,BC=40mの直角三角形状の畑がある。この畑に,幅が2メートルのあぜ道DEFGHIJを残りの面積が等しくなるように作りたい。BE,DE,HC,JC,AI,FGの長さを求めよ。Aの座標を(Ax,Ay)などとし,A~Jまでの合計20変数と,面積をSとおき,以下の連立方程式を解く。いくつかの変数値は自明であるが,方程式の本数としては7本,変数はDy,Ex,Fy,Hx,Iy,Jy,Sの7個なので,過不足ない。include("julia-source.txt...算額(その1586)

  • 算額(その1585)

    算額(その1585)愛知県名古屋市熱田神宮天保13年(1842)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:円4個,接線4本#Julia,#SymPy,#算額,#和算,#数学左円と右円が外接しており,左円内には左小円が内接し,右円内には右小円が内接している。左円と右小円,右円と左小円の共通接線を2本ずつ引く。左小円と右小円の直径は,左円と右円の直径でどのように表されるか。左円の半径と中心座標をr1,(r1,0)右円の半径と中心座標をr2,(2r1+r2,0)左小円の半径と中心座標をr31,(r1+r31,0)右小円の半径と中心座標をr32,(2r1+r32,0)とおき,以下の連立方程式を解き,r31,r32を求める。include("julia-sou...算額(その1585)

  • 算額(その1584)

    算額(その1584)福島県田村市安倍文殊菩薩堂明治10年(1877)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:円6個,接線2本#Julia,#SymPy,#算額,#和算,#数学大円2個が外接しており,上の大円内に中円2個が内接している。2個の中円の共通接線は上の大円の中心を通る。中円と共通接線に接する小円を容れる。また,上の大円の中心を通り,下の大円が内接する外円を描く。小円の直径を1としたとき,大円,中円,外円の直径はいかほどか。外円の半径と中心座標をR,(0,r3-R);R=3r3/2大円の半径と中心座標をr3,(0,r3),0,-r3)中円の半径と中心座標をr2,(0,r2),(0,2r3-r2)小円の半径と中心座標をr1,(0,2r3,-2r...算額(その1584)

  • 算額(その21)改訂版

    算額(その21)改訂版本来の題意に沿った解を求めるように改訂した。福島県田村郡三春町御木沢厳島神社明治18年(1885)http://www.wasan.jp/fukusima/miharuitukusima3.htmlキーワード:円5個,半円2個,長方形#Julia,#SymPy,#算額,#和算,#数学長方形の中に,半円2個,甲円1個,乙円2個,丙円2個を容れる。丙円の直径が与えられたとき,黒積を求める術を述べよ。半円の半径と中心座標をR,(0,R/2)甲円の半径と中心座標をr1,(0,0)丙円の半径と中心座標をr3,(R-r3,0)乙円の半径と中心座標をr2,(r2,0)とおく。黒積は,「半径Rの円の面積の1/8の扇形の面積ACBから,三角形の面積OBCと乙円の面積の1/2を引いたものの4倍である」。...算額(その21)改訂版

  • 算額(その1583)

    算額(その1583)福島県田村郡三春町御木沢厳島神社三春まちなか寺子屋:厳島神社新算額https://miharukoma.com/wp-content/uploads/2018/11/12.22厳島神社-新算額.pdfhttps://miharukoma.com/wp-content/uploads/2018/12/寺子屋12.22問題解説.pdfキーワード:円4個,半円2個,長方形#Julia,#SymPy,#算額,#和算,#数学長方形の中に,半円2個,甲円1個,乙円2個,丙円2個を容れる。半円の半径が48寸のとき,乙円,丙円の半径はいかほどか。半円の半径と中心座標をR,(0,R/2)甲円の半径と中心座標をr1,(0,0)丙円の半径と中心座標をr3,(R-r3,0)乙円の半径と中心座標をr2,(r2,...算額(その1583)

  • 算額(その1582)

    算額(その1582)福島県田村郡三春町御木沢厳島神社三春まちなか寺子屋:厳島神社新算額https://miharukoma.com/wp-content/uploads/2018/11/12.22厳島神社-新算額.pdfhttps://miharukoma.com/wp-content/uploads/2018/12/寺子屋12.22問題解説.pdfキーワード:円4個,半円2個,長方形#Julia,#SymPy,#算額,#和算,#数学長方形の中に,半円2個,乙円2個,丙円2個を容れる。半円の半径が48寸のとき,乙円,丙円の半径はいかほどか。半円の半径と中心座標をR,(0,R/2)丙円の半径と中心座標をr3,(R-r3,0)乙円の半径と中心座標をr2,(r2,0)とおき,以下の連立方程式を解く。includ...算額(その1582)

  • 算額(その1581)

    算額(その1581)福島県田村郡三春町御木沢厳島神社三春まちなか寺子屋:厳島神社新算額https://miharukoma.com/wp-content/uploads/2018/11/12.22厳島神社-新算額.pdfhttps://miharukoma.com/wp-content/uploads/2018/12/寺子屋12.22問題解説.pdfキーワード:円4個,半円2個,正方形#Julia,#SymPy,#算額,#和算,#数学長方形の中に,半円2個,正三角形4個,乙円2個,丙円2個を容れる。半円の半径が48寸のとき,乙円,丙円の半径はいかほどか。半円の半径と中心座標をR,(0,√3R/2)丙円の半径と中心座標をr3,(R-r3,0)乙円の半径と中心座標をr2,(r2,0)とおき,以下の連立方程式を...算額(その1581)

  • 算額(その1580)

    算額(その1580)福島県田村郡三春町御木沢厳島神社三春まちなか寺子屋30.12.22https://miharukoma.com/wp-content/uploads/2018/12/寺子屋12.22問題解説.pdfキーワード:円4個,半円2個,正方形#Julia,#SymPy,#算額,#和算,#数学正方形の中に半円2個,乙円2個,丙円2個を容れる。半円の直径が96寸のとき,乙円,丙円の直径はいかほどか。半円の半径と中心座標をr1,(0,r1)丙円の半径と中心座標をr3,(r1-r3,0)乙円の半径と中心座標をr2,(r1-2r3-r2,0)とおき,以下の連立方程式を解く。include("julia-source.txt")#julia-source.txtソースhttps://blog.goo.ne...算額(その1580)

  • 算額(その1579)

    算額(その1579)福島県田村市日渡神社明治21年(1888)https://www.city.tamura.lg.jp/soshiki/30/bunkazai.htmlキーワード:円9個,外円#Julia,#SymPy,#算額,#和算,#数学外円の中に,大円2個と,小円6個を容れる。大円の直径が与えられたときに小円の直径を求める術を述べよ。外円の半径と中心座標をR,(0,0)大円の半径と中心座標をr1,(r1,0)小円の半径と中心座標をr2,(0,y21),(r2,y22)とおき,以下の連立方程式を解く。include("julia-source.txt")#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f5b73...算額(その1579)

  • Julia で RGB による色の指定法

    JuliaでRGBによる色指定を行うには、主にColors.jlパッケージを使用します。このパッケージでは、RGB(r,g,b)形式で色を指定できます。r,g,bは0.0から1.0の範囲のFloat64値です。1.Colors.jlのインストールまずColors.jlをインストールします。usingPkgPkg.add("Colors")2.RGB色の指定usingColorscolor1=RGB(1.0,0.0,0.0)#赤color2=RGB(0.0,1.0,0.0)#緑color3=RGB(0.0,0.0,1.0)#青color4=RGB(0.5,0.5,0.5)#グレー3.255スケールのRGB値を使う場合通常の0-255スケールのRGB値を使いたい場合は、RGB24を使うか、255で割ることで対...JuliaでRGBによる色の指定法

  • 算額(その1578)

    算額(その1578)『算法續淺問答巻之七』terasima3.pdfhttp://www.wasan.jp/terasima/terasima.htmlhttp://www.wasan.jp/terasima/terasima3.pdfキーワード:円環,外円#Julia,#SymPy,#算額,#和算図のように8個の等円が互いに外接し,外円に内接している。外円の直径が10寸のとき,等円の直径を求めよ。外円の半径と中心座標をR,(0,0)等円の半径と中心座標をr,(R-r,0)等円の個数をnとおき,以下の方程式を解く。include("julia-source.txt")#julia-source.txtソースhttps://blog.goo.ne.jp/r-de-r/e/ad3a427b84bb416c4f...算額(その1578)

  • 手打ちうどん 三徳

    高松市林町手打ちうどん三徳いつものしっぽくうどんやや太麺ちょっと変わった店構え手打ちうどん三徳

  • 算額(その1577)

    算額(その1577)愛知県名古屋市中央区大須観音(北野山真福寺寶生院)天保8年(1837)藤安順:所掲大須観音堂解義山田潤:動的幾何ソフトウエアを利用した平面図形の作図についての一考察-和算所にある平面図形問題の利用-2023018-Yamada.pdfhttps://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2273-19.pdfキーワード:円10個,外円#Julia,#SymPy,#算額,#和算外円の中に大円4個,甲円3個,乙円を2個容れる。甲円の直径が1寸のとき,乙円および外円の直径はいかほどか。算額(その1575)は,深川が意図的に大円が交差する部分にある円を省略し,甲円と乙円の関係を述べさせるものであったようだ。外円の半径と中心...算額(その1577)

  • 算額(その1576)

    算額(その1576)佐久間纉:算法起源集,1877.https://kokusho.nijl.ac.jp/biblio/100234582/69?ln=ja山田潤:動的幾何ソフトウエアを利用した平面図形の作図についての一考察-和算所にある平面図形問題の利用-2023018-Yamada.pdfhttps://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/2273-19.pdfキーワード:円7個,外円#Julia,#SymPy,#算額,#和算外円の中に甲円,乙円,丙円を2個ずつ容れる。甲円,乙円,丙円の直径が与えられたとき,外円の直径はいかほどか。外円の半径と中心座標をR,(0,0)甲円の半径と中心座標をr1,(0,R-r1)乙円の半径と中心座...算額(その1576)

  • 算額(その1575)

    算額(その1575)愛知県名古屋市中央区大須観音(北野山真福寺寶生院)天保8年(1837)深川英俊,トニー・ロスマン:聖なる数学:算額,森北出版株式会社,2010年4月22日.キーワード:円8個,外円#Julia,#SymPy,#算額,#和算外円の中に,大円4個,小円3個を容れる。外円と小円の直径が与えられたとき,大円の直径はいかほどか。深川は,「中央の小円1と左右の小円2の直径の関係を示せ」という問題としている。図を見ただけで直径は等しいとわかるが,ちゃんと式で示せということではある。大円の中心のy座標はどんな非負の値も取れるが,3個の小円の直径は同じであるということで,算額問題としては,「大円の直径を外円と小円の直径であらわせ」という問題にした。include("julia-source.txt")#...算額(その1575)

arrow_drop_down

ブログリーダー」を活用して、r-de-rさんをフォローしませんか?

ハンドル名
r-de-rさん
ブログタイトル
算額あれこれ
フォロー
算額あれこれ

にほんブログ村 カテゴリー一覧

商用