サボテンの栽培とpython, matplotlib, SciPy, NumPy, scikit-image, Pandasに関する技術ブログ
|
https://twitter.com/Sabopy_com |
---|
[seaborn-image] 7. ParamGridで各種フィルタのパラメータを変化させた結果をまとめて表示
Seaborn-imageはmatplotlibベースの画像可視化ライブラリであり、簡潔なコードで画像データを明瞭に描写することができる。データ可視化ライブラリであるseabornの2次元データ版のような感じとなっている。ここでは、各種フィルタのパラメータを変化させた結果をまとめて表示できるParamGridについて説明する。
[seaborn-image] 6. fftplotでフーリエ変換した画像を表示
Seaborn-imageはmatplotlibベースの画像可視化ライブラリであり、簡潔なコードで画像データを明瞭に描写することができる。データ可視化ライブラリであるseabornの2次元データ版のような感じとなっている。ここでは、画像にフーリエ変換した画像を表示するfftplotについて説明する。
[seaborn-image] 5. filterplotで各種フィルタをかけた画像を表示
Seaborn-imageはmatplotlibベースの画像可視化ライブラリであり、簡潔なコードで画像データを明瞭に描写することができる。データ可視化ライブラリであるseabornの2次元データ版のような感じとなっている。ここでは、画像に各種フィルタをかけて表示できるfilterplotについて説明する。
[scikit-image] 108. マキシマムフィルタによる高輝度部分の強調(skiamge.filters.rank.maximum)
skiamgeのfiltersのrank.maximumを使って、画像中の高輝度部分を強調する方法について説明する。
[SciPy] 29. 平均化フィルタによる画像の平滑化(ndimage.uniform_filter)
scipyのndimageのuniform_filterを使って、画像を平均化して平滑にする方法について説明する。
[SciPy] 28. パーセンタイルフィルタによる画像の平滑化(ndimage.percentile_filter)
scipyのndimageのpercentile_filterを使って、画像を任意のパーセンタイル点で平滑化する方法について説明する。
[SciPy] 27. ミニマムフィルタによる低輝度部分の強調(ndimage.minimum_filter)
scipyのndimageのminimum_filterを使って、画像中の低輝度部分を強調して、高輝度部分を目立たなくする方法について説明する。
[SciPy] 26. ラプラシアンフィルタによるエッジ検出(ndimage.laplace)
はじめにscipyのndimageのlaplaceを使って、ラプラシアンフィルタで画像のエッジを検出して表示する方法について説明する。コード&解説モジュールのインポートバージョン画像の読み込み下記サイトから画像を取得し、plt.imrea.
[SciPy] 25. LoGフィルタによるエッジ検出(ndimage. gaussian_laplace)
scipyのndimageのgaussian_laplaceを使って、LoGフィルタで画像のエッジを検出して表示する方法について説明する。
[seaborn-image] 4. rgbplotでRGB画像を分割表示
はじめにSeaborn-imageはmatplotlibベースの画像可視化ライブラリであり、簡潔なコードで画像データを明瞭に描写することができる。データ可視化ライブラリであるseabornの2次元データ版のような感じとなっている。ここでは、
[SciPy] 24. ガウス微分フィルタによるエッジ検出(ndimage.gaussian_gradient_magnitude)
scipyのndimageのgaussian_gradient_magnitudeを使って、画像のエッジを検出して表示する方法について説明する。
[seaborn-image] 3. ImageGridによる複数画像の表示
Seaborn-imageはmatplotlibベースの画像可視化ライブラリであり、簡潔なコードで画像データを明瞭に描写することができる。データ可視化ライブラリであるseabornの2次元データ版のような感じとなっている。ここでは、複数の画像を表示できるImageGridについて説明する。
[seaborn-image] 2. imghistによる画像とそのヒストグラムの同時表示
Seaborn-imageはmatplotlibベースの画像可視化ライブラリであり、簡潔なコードで画像データを明瞭に描写することができる。データ可視化ライブラリであるseabornの2次元データ版のような感じとなっている。ここでは、グレースケール画像とそのヒストグラムを同時に表示することのできるimghistについて説明する。
[seaborn-image] 1. imgplotによる画像データの表示
Seaborn-imageはmatplotlibベースの画像可視化ライブラリであり、簡潔なコードで画像データを明瞭に描写することができる。データ可視化ライブラリであるseabornの2次元データ版のような感じとなっている。ここでは、RGB画像またはグレースケール画像を表示することのできるimgplotについて説明する。
[matplotlib animation] 109. バイバインのアニメーション
matplotlibのFuncAnimationで、「ドラえもん」のひみつ道具の一つであるバイバインで栗まんじゅうを増やすアニメーションを表示する。
[lmfit] 26. 指数関数的に修正されたガウス分布モデルによるカーブフィッティング
lmfitは非線形最小二乗法を用いてカーブフィットするためのライブラリであり、Scipy.optimize.curve_fitの拡張版に位置する。ここでは、データを指数関数的に修正されたガウス分布(EMG)によりカーブフィッティングする方法について説明する。
[lmfit] 25. 減衰高調波発振器モデルによるカーブフィッティング
lmfitは非線形最小二乗法を用いてカーブフィットするためのライブラリであり、Scipy.optimize.curve_fitの拡張版に位置する。ここでは、データを減衰高調波発振器モデルによりカーブフィッティングする方法について説明する。
[lmfit] 24. 減衰高調波発振器モデルによるカーブフィッティング
lmfitは非線形最小二乗法を用いてカーブフィットするためのライブラリであり、Scipy.optimize.curve_fitの拡張版に位置する。ここでは、データを減衰高調波発振器モデルによりカーブフィッティングする方法について説明する。
[SciPy] 23. convex_hull_plot_2dによる凸包(とつほう)の表示
scipyのConvexHullとconvex_hull_plot_2dを使って、凸包を表示する方法について説明する。
[ipywidgets] 36. F分布の自由度をIntSliderで調整して表示
F分布とは、統計の分野で分散分析(ANOVA)などに用いられる確立分布である。ここでは、分布のパラメータである自由度をIntSliderで調整することで、対話的に、自由度の異なるF分布を表示させる方法について説明する。
[matplotlib] 118. 飲み応えカーブ(ax.fill_between)
アサヒビールの新スーパードライに表示されている辛口カーブのような飲みごたえカーブをmatplotlibで表示する方法について説明する。
[ipywidgets] 35. FloatLogSliderで正則化パラメータを調整してL2正則化
sklearn.linear_modelのRidgeにより、過学習を抑制した線形回帰(L2正則化)ができる。ここではノイズの多いデータを対象に、ipywidgetsのFloatLogSliderでL2正則化のパラメータ(alpha)を調整する方法について説明する。
[scikit-learn] 13. linear_model.RidgeによるL2正則化
sklearn.linear_modelのRidgeにより、線形回帰で過学習を抑制することが可能なL2正則化ができる。ここではノイズの多いデータを対象に、L2正則化のパラメータ(alpha)を調整した時の変化をアニメーションで表示する。
[NumPy] 13. ヒストグラム用のbinsをnp. histogram_bin_edgesで作成する
np.histogram_bin_edgesでヒストグラム用のbinsを作成する。作成したbinsでヒストグラムを作成して表示する方法について説明する。
「ブログリーダー」を活用して、サボパイさんをフォローしませんか?
指定した記事をブログ村の中で非表示にしたり、削除したりできます。非表示の場合は、再度表示に戻せます。
画像が取得されていないときは、ブログ側にOGP(メタタグ)の設置が必要になる場合があります。