C言語でできる簡単なプログラム#include <stdio.h>int main() { int rows, i, j; printf("ピラミッドの高さを入力してください: "); scanf_s("%d", &rows); for (...
奇関数の定積分には \begin{align}\int_{-a}^af(x)dx=0\end{align} が成り立つ
詳しくはここ MATLABの行列演算を使うと楽 N=10000; n=1:1:N; result=sum(1./n-log(1+1./n))
オイラーの定数とは \begin{align}\gamma=\lim_{n \to \infty} (1 + \frac{1}{2} + \cdots + \frac{1}{n} - \log n)\end{align} の極限値のことであ
クロネッカー積には次の関係が成り立つ。 \begin{align}x_1 \otimes (y_1+y_2)&=x_1 \otimes y_1 + x_1 \otimes y_2 \\(x_1 + x_2 ) \otimes y_1
\(X,\mathcal{O}\)を位相空間とする。 \begin{align}{}^{\forall} x_1,x_2 \in X (x_1 \neq x_2) \hspace{2mm} {}^{\exists} \mathcal{O}_
PID制御とは比例・積分・微分の3つを組み合わせて行う制御方式である。 PID制御は次のように与えられる。 \begin{align}u(t)=K_P e(t) + K_{I} \int_0^{t} e(\tau) d\tau + K_D
正五角形の1辺の長さを1とすると正五角形の対角線の長さ\(a\)は余弦定理より \begin{align}a^2&=1^2 + 1^2 - 2 \times 1 \times 1 \times \cos 108\\&= 2
40枚の中から指定の五枚を引く確率は \begin{align}\frac{1}{{}_{40} C_{5}={1}{658008}\end{align} となる
ウッダル数は \begin{align}n \times 2^n -1\end{align} の形をしている数である。 MATLABでは次のように計算できる。 n=10; count=1; p=2; for i=1:1:n K(i)=i*p
MATLABで作ったカレン素数を探すプログラムを改造してみる
カレン数は \begin{align}n \times 2^n + 1\end{align} であるが \begin{align}n \times p^n + 1\end{align} を考える。 n=10; count=1; p=3; f
カレン数は \begin{align}n \times 2^i + 1\end{align} で表される。 カレン数のうち素数のものをカレン素数という。 今回はMATLABでカレン素数を探す。 以下ソース n=10; count=1; fo
参考 RNNは入出力を等しく学習→長期的な依存性の学習が苦手
NUMBERSには横滑り現象なるものがあるらしくLSTMで学習して当てる試みがほそぼそとあるらしい Qiitaだとこれとか Github 機械学習に興味あるのでやってみようと思う
「ブログリーダー」を活用して、しろねこさんをフォローしませんか?
C言語でできる簡単なプログラム#include <stdio.h>int main() { int rows, i, j; printf("ピラミッドの高さを入力してください: "); scanf_s("%d", &rows); for (...
C言語で文字コード表を出力する 実行すれば出てくる #include <stdio.h> int main(void) { int i; char str; for (i = 0x41; i < 0x7b; i++) {
MATLABでテイラー展開してグラフ化するプログラムを書いた。以下コード close all f = @(x) cos(x); a = 0; n = 15; x_range = ; =plotTaylorSeries(f, a, n, x_
※本抽選は厳正に行われています。(+90kg固定) % ステップ1: 文字列入力 segments = cell(1, 6); segments{1} = '+50kg'; segments{2} = '+60
ChatGPTにネルダーミード法を使った関数の最適解を求めてもらった あってるかは後日確認するつもり % 最小化する関数 func = @(x) (x(1) - 3)^2 + (x(2) - 2)^2; % 初期点 x0 = ; % 収束許
マンデルブロ集合を書くだけ % パラメータ設定 maxIter = 5000; % 最大反復回数 xlim = ; % x範囲 ylim = ; % y範囲 resolution = 1000; % 解像度 % 複素数平面のメッシュグリッド
予測されたロト7の当選番号: これうまくいってるのかな
matlabで振り子を動かしてみる 運動方程式などの細かい話は次回 clc; clear; close all; % パラメータ設定 g = 9.81; % 重力加速度 (m/s^2) L = 1.0; % 振り子の長さ (m) theta
1. GRU(Gated Recurrent Unit) 特徴: LSTMに似たリカレントニューラルネットワーク(RNN)の一種。 計算効率が高く、トレーニング時間が短い。 記憶セルが少ないため、モデルがシンプルでありながら、LSTMと同等
昨日作ってもらったソースコードをC++に書き換えてもらった あっという間! #include <iostream> #include <vector> #include <fstream> #includ
はじめに ロト7の当選番号を予測することは、非常に挑戦的でエキサイティングな試みです。この記事では、長短期記憶(LSTM)ネットワークを使用してロト7の当選番号を予測するためのPythonプログラムを紹介します。 必要なツールとライブラリ
パチンコの確立計算機なるものがあるみたい どうやって計算してるんだろう・・・
\(s\)平面から\(z\)平面への変換式は \begin{align}\label{S-T transform}z=e^{sT}\end{align} で与えられる.\(z\)平面上の点および\(s\)平面上の点を \begin{alig
計算するのが大変な積分に用いる置換積分で何が起きるのか 下の積分の例で見る \begin{align}\displaystyle \int x(2-x)^4 dx\end{align} \(t=2-x\)とおくと \begin{align}
複素関数を使えば複素数を写像できる。 ディジタル制御では \begin{align}s=e^{sT}\end{align} を使うので\(T=1\)として写像してみる 例えば下のプログラムの例では虚軸が円に写される。 x=0; y=-5:0
台形近似で積分を計算してみる Nが刻み数 minが下限、maxが上限 funcが被積分関数 N=100; min=0; max=1; t=linspace(min,max,N); dt=t(2)-t(1); S=zeros(size(t))
博士とったのでブログも再開します!
Hammerstein型非線形モデルの非線形ブロックによるゲインを\(\alpha\)とすると \begin{align}B(q^{-1}) &=\alpha b_{1} q^{-1} +\alpha b_{2} q^{-2} +
Hammerstein型非線形モデルの非線形ブロックによるゲインを\(\alpha\)とすると \begin{align}B(q^{-1}) &=\alpha b_{1} q^{-1} +\alpha b_{2} q^{-2} +
\(f(x)=1\)とする。この関数を\(a\)から\(b\)まで複数回積分すると \begin{align}\int_a^b 1 dx=a-b\end{align} \begin{align}\int_a^b \int_a^b 1 dx
\begin{align}\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx\end{align}
奇関数の定積分には \begin{align}\int_{-a}^af(x)dx=0\end{align} が成り立つ
詳しくはここ MATLABの行列演算を使うと楽 N=10000; n=1:1:N; result=sum(1./n-log(1+1./n))
オイラーの定数とは \begin{align}\gamma=\lim_{n \to \infty} (1 + \frac{1}{2} + \cdots + \frac{1}{n} - \log n)\end{align} の極限値のことであ
クロネッカー積には次の関係が成り立つ。 \begin{align}x_1 \otimes (y_1+y_2)&=x_1 \otimes y_1 + x_1 \otimes y_2 \\(x_1 + x_2 ) \otimes y_1
\(X,\mathcal{O}\)を位相空間とする。 \begin{align}{}^{\forall} x_1,x_2 \in X (x_1 \neq x_2) \hspace{2mm} {}^{\exists} \mathcal{O}_
PID制御とは比例・積分・微分の3つを組み合わせて行う制御方式である。 PID制御は次のように与えられる。 \begin{align}u(t)=K_P e(t) + K_{I} \int_0^{t} e(\tau) d\tau + K_D
正五角形の1辺の長さを1とすると正五角形の対角線の長さ\(a\)は余弦定理より \begin{align}a^2&=1^2 + 1^2 - 2 \times 1 \times 1 \times \cos 108\\&= 2
40枚の中から指定の五枚を引く確率は \begin{align}\frac{1}{{}_{40} C_{5}={1}{658008}\end{align} となる
ウッダル数は \begin{align}n \times 2^n -1\end{align} の形をしている数である。 MATLABでは次のように計算できる。 n=10; count=1; p=2; for i=1:1:n K(i)=i*p
カレン数は \begin{align}n \times 2^n + 1\end{align} であるが \begin{align}n \times p^n + 1\end{align} を考える。 n=10; count=1; p=3; f
カレン数は \begin{align}n \times 2^i + 1\end{align} で表される。 カレン数のうち素数のものをカレン素数という。 今回はMATLABでカレン素数を探す。 以下ソース n=10; count=1; fo
参考 RNNは入出力を等しく学習→長期的な依存性の学習が苦手
NUMBERSには横滑り現象なるものがあるらしくLSTMで学習して当てる試みがほそぼそとあるらしい Qiitaだとこれとか Github 機械学習に興味あるのでやってみようと思う
和訳してみるGrassCatPokemonくさねこポケモンItsfluffyfurissimilarincompositiontoplants.ふわふわした毛皮は植物と成分が似ている。fluffyふわふわしたfur毛皮ThisPokemon
電力と同期化力の関係は\begin{align}P_e=\frac{\partialP_e}{\partial\delta}=\frac{E_sE_r}{X}\cos\delta\end{align}
風車の回転断面積を\(A\)、風速を\(V\)、空気の密度を\(\rho\)、ロータの係数を\(C\)とすると風力発電の出力\(P\)は\begin{align}P=\frac{1}{2}C\rhoV^3A\end{align}
matlabのtanとtandの違いを簡単に見てみる。まずは89から90どの範囲で重ねて比較。ほとんど同じ値が得られている。2つの方法の誤差。通常誤差は0であるが微妙に生じている。90度に近くなるにつれて大きくなるようだ。以下コードtd=l