C106まだまだあるけど何出そうかなアクリルキーホルダーあたりが良いかなぁ
matlabのtanとtandの違いを簡単に見てみる。まずは89から90どの範囲で重ねて比較。ほとんど同じ値が得られている。2つの方法の誤差。通常誤差は0であるが微妙に生じている。90度に近くなるにつれて大きくなるようだ。以下コードtd=l
電場\(\boldsymbolE\)、磁場\(\boldsymbolB\)中を移動する電荷\(\boldsymbolq\)の荷電粒子に加わる力は荷電粒子の位置を\(\boldsymbolx\)、速度を\(\boldsymbolv\)とすれば
100以下であればprevprime(100)を使えばいい
PID制御則が\begin{align}u(t)=K_{p}e(t)+K_{i}\inte(\tau)d\tau+K_{d}\frac{de(t)}{dt}\end{align}で与えられているとき、この制御則に対するレギュレータ問題を考え
PID制御は\begin{align}u(t)=K_{p}e(t)+K_{i}\inte(t)d\tau+K_{d}\frac{de(t)}{dt}\end{align}のような問題を言い、\(requiv0\)をレギュレータ問題という。
システムの安定性を調べるにはLyapunov方程式\begin{align}PA+A^{T}P=-Q\end{align}を調べればいい。\(P\)は\(A\)の固有値の実部が負であれば\begin{align}P=\int_0^\inft
コマンドラインにlogoと打つとが出力される。
ある正の整数\(a\)は\(a\)以下の素数\(p_1 p_2 \cdots p_{n-1} p_n\)の積で表すことができる。つまり\begin{align}a=p_1 p_2 \cdots p_{n-1} p_n\end{align}が
相加相乗平均とは\begin{align}\frac{a+b}{2} \geq \sqrt{ab}\end{align}のことを言う。
「ブログリーダー」を活用して、しろねこさんをフォローしませんか?
C106まだまだあるけど何出そうかなアクリルキーホルダーあたりが良いかなぁ
C言語でできる簡単なプログラム#include <stdio.h>int main() { int rows, i, j; printf("ピラミッドの高さを入力してください: "); scanf_s("%d", &rows); for (...
C言語で文字コード表を出力する 実行すれば出てくる #include <stdio.h> int main(void) { int i; char str; for (i = 0x41; i < 0x7b; i++) {
MATLABでテイラー展開してグラフ化するプログラムを書いた。以下コード close all f = @(x) cos(x); a = 0; n = 15; x_range = ; =plotTaylorSeries(f, a, n, x_
※本抽選は厳正に行われています。(+90kg固定) % ステップ1: 文字列入力 segments = cell(1, 6); segments{1} = '+50kg'; segments{2} = '+60
ChatGPTにネルダーミード法を使った関数の最適解を求めてもらった あってるかは後日確認するつもり % 最小化する関数 func = @(x) (x(1) - 3)^2 + (x(2) - 2)^2; % 初期点 x0 = ; % 収束許
マンデルブロ集合を書くだけ % パラメータ設定 maxIter = 5000; % 最大反復回数 xlim = ; % x範囲 ylim = ; % y範囲 resolution = 1000; % 解像度 % 複素数平面のメッシュグリッド
予測されたロト7の当選番号: これうまくいってるのかな
matlabで振り子を動かしてみる 運動方程式などの細かい話は次回 clc; clear; close all; % パラメータ設定 g = 9.81; % 重力加速度 (m/s^2) L = 1.0; % 振り子の長さ (m) theta
1. GRU(Gated Recurrent Unit) 特徴: LSTMに似たリカレントニューラルネットワーク(RNN)の一種。 計算効率が高く、トレーニング時間が短い。 記憶セルが少ないため、モデルがシンプルでありながら、LSTMと同等
昨日作ってもらったソースコードをC++に書き換えてもらった あっという間! #include <iostream> #include <vector> #include <fstream> #includ
はじめに ロト7の当選番号を予測することは、非常に挑戦的でエキサイティングな試みです。この記事では、長短期記憶(LSTM)ネットワークを使用してロト7の当選番号を予測するためのPythonプログラムを紹介します。 必要なツールとライブラリ
パチンコの確立計算機なるものがあるみたい どうやって計算してるんだろう・・・
\(s\)平面から\(z\)平面への変換式は \begin{align}\label{S-T transform}z=e^{sT}\end{align} で与えられる.\(z\)平面上の点および\(s\)平面上の点を \begin{alig
計算するのが大変な積分に用いる置換積分で何が起きるのか 下の積分の例で見る \begin{align}\displaystyle \int x(2-x)^4 dx\end{align} \(t=2-x\)とおくと \begin{align}
複素関数を使えば複素数を写像できる。 ディジタル制御では \begin{align}s=e^{sT}\end{align} を使うので\(T=1\)として写像してみる 例えば下のプログラムの例では虚軸が円に写される。 x=0; y=-5:0
台形近似で積分を計算してみる Nが刻み数 minが下限、maxが上限 funcが被積分関数 N=100; min=0; max=1; t=linspace(min,max,N); dt=t(2)-t(1); S=zeros(size(t))
博士とったのでブログも再開します!
パチンコの確立計算機なるものがあるみたい どうやって計算してるんだろう・・・
\(s\)平面から\(z\)平面への変換式は \begin{align}\label{S-T transform}z=e^{sT}\end{align} で与えられる.\(z\)平面上の点および\(s\)平面上の点を \begin{alig
計算するのが大変な積分に用いる置換積分で何が起きるのか 下の積分の例で見る \begin{align}\displaystyle \int x(2-x)^4 dx\end{align} \(t=2-x\)とおくと \begin{align}
複素関数を使えば複素数を写像できる。 ディジタル制御では \begin{align}s=e^{sT}\end{align} を使うので\(T=1\)として写像してみる 例えば下のプログラムの例では虚軸が円に写される。 x=0; y=-5:0
台形近似で積分を計算してみる Nが刻み数 minが下限、maxが上限 funcが被積分関数 N=100; min=0; max=1; t=linspace(min,max,N); dt=t(2)-t(1); S=zeros(size(t))
博士とったのでブログも再開します!