searchカテゴリー選択
chevron_left

カテゴリーを選択しなおす

cancel
プロフィール
PROFILE

ドリるーむさんのプロフィール

住所
未設定
出身
未設定

自由文未設定

ブログタイトル
ドリるーむ
ブログURL
https://drillmu.net/
ブログ紹介文
中学生向けの数学教材を無料ダウンロードできる総合サイト
更新頻度(1年)

76回 / 281日(平均1.9回/週)

ブログ村参加:2020/02/14

本日のランキング(IN)
読者になる

新機能の「ブログリーダー」を活用して、ドリるーむさんの読者になりませんか?

ハンドル名
ドリるーむさん
ブログタイトル
ドリるーむ
更新頻度
76回 / 281日(平均1.9回/週)
読者になる
ドリるーむ

ドリるーむさんの新着記事

1件〜30件

  • 正の数・負の数(魔方陣)

    今回の問題のような、縦、横、斜めの合計が同じように穴埋めする問題を魔方陣といいます。頭の体操のような要素もあり、楽しみながら計算力を高めることができますよ。マイナスの計算もあるので頑張ってくださいね。

  • 連立方程式(小数)

    連立方程式の計算の基礎ができていれば、戸惑うことはないでしょう。もちろん、まずすべての項に同じ数を掛けて、整数にしてから計算しましょう。出た解を、整数にした式でいいので、代入して検算することも必ずしてくださいね。

  • 式の証明

    式の展開を利用した式の証明の問題です。文字式の表し方が定着していれば、問題文に書かれていることを素直に表して計算するだけです。差のときは、必ず大きいほうから小さいほうを引くことだけは注意をしましょう。

  • 関数(動点)

    点の動きを処理する問題で最初は戸惑うかもしれませんが、パターンが決まっているので慣れると決して難しくはありません。動点は2年生、3年生になっても出てきますので今のうちに定着させましょう。たくさん練習してくださいね。

  • 直角三角形の合同の証明

    直角三角形において、以下の合同条件は頭に入れておきましょう。・斜辺と1鋭角がそれぞれ等しい。・斜辺と他の1辺がそれぞれ等しい。直角三角形と分かっている三角形において、等しいものを2つだけ見つければ良いので、ラクです。練習して早く慣れましょう

  • 2次方程式の文章題(道幅編)

    道幅の問題は道を端に追いやって色部分を合体して一つの長方形にすることがポイントです。それさえ慣れれば決して難しくはありません。解の吟味だけは注意をしなければなりません。計算で出た2つの解が条件にあうかどうか必ず確かめてくださいね。

  • 方程式の文章題(速さ編)

    この単元において、速さと時間は目に見えないものなので、苦手意識をもつ人は多いです。表などを書いてできるだけ目に見えるような方法で練習することでコツがつかめますよ。1問目は父と子供2人の進んだ距離が等しいことを利用して方程式を作り、2問目は行

  • 1次関数(動点)

    1次関数の応用問題です。点が動くので慣れるまでは戸惑うと思いますが、パターンをつかめば単純です。たくさん練習して定着させましょう。

  • 2乗に比例する関数(動点)

    関数の分野ではありますが、図形の要素も絡んだ少し難しい問題です。でも実力テストや入試には頻出なので、とても重要な単元です。最初は難しく感じるかもしれませんが、コツをつかめば楽しくなりますよ。たくさん練習して慣れてくださいね。

  • 規則性

    文字式を利用した規則性の練習問題です。一般式が作れるようになったら、それをもとに値をいろいろ求められます。テストにも出題されやすいので、ぜひ攻略しておきましょう。

  • 一次関数(ダイヤグラム)

    実力テストや入試でよく出る一次関数の応用問題です。最初は戸惑うかもしれませんが、パターンを掴めばできるようになりますよ。何度も練習して定着させましょう。

  • 平方根(ルートの大小)

    ルートもれっきとした数字のなので大きさがあります。その大きさを比較する問題ですが、ルートは2乗すると混合が外れることが最大のポイントです。決して難しくはありませんが、とても大切な単元なので確実に解けるようにしておきましょう。

  • 正の数・負の数(利用①)

    正の数・負の数の応用問題です。計算にまだ自信がない人はまず計算の練習をしましょう。基礎が分かっていれば決して難しくはありませんが、問題文をしっかり読んで、ミスのないように解いてくださいね。

  • 連立方程式(代入法)

    連立方程式の2種類の計算のうち、1つの方法である代入法の問題です。加減法に比べて使う機会はそんなにありませんが、問題によってどちらを使うかを独自にはんだんできるように何度も練習しましょう。加減法だけですべての問題は解けますが、代入法を使うべ

  • 相似(中点連結定理)

    中点連結定理はあまり難しくはないものですが、入試などには頻繁に使われるとても大切な定理です。中点という条件があったらこの定理を使え、というくらい大事です。難しくないからこそ、いつでも使えるように練習しておきましょう。

  • 比例・反比例の応用

    比例と反比例のグラフが同時に出てくるちょっと難しい問題です。もし、比例や反比例の基礎に自信がない場合は、まずその基礎をしっかり復習してからこちらの問題に取り組むようにしてください。逆に基礎が分かっていれば、それを使って解いていくだけなので、

  • 相似(平行線と線分の比)

    複数の平行線の間の線分の長さの比が等しくなることを利用した問題です。決して難しいものではありませんが、直線が交差している図は、頭の中でいいので直線を左右に平行に移動させて、引き離して考えるようにしましょう。答えに分数が出ても焦らないようにし

  • 正の数・負の数(累乗)

    慣れるまでは計算ミスを起こしやすい単元です。特にマイナスが絡んでくると、混乱しやすいです。でも慣れてくるとしくみがしっかりと理解でき、簡単に感じますので何度も練習してくださいね。

  • 一次関数(総合問題)

    一次関数のグラフにおける総合問題です。もちろんこれまで学習した一次関数の内容を定着できていないと難しいので、自信がない人はまず復習しておいてくださいね。このような問題は定期テストだけでなく、実力テスト、入試にも出る問題ですので何度も練習して

  • 式の展開(乗法公式の利用2)

    展開後にさらに同類項をまとめなければいけない問題なので、乗法公式が定着していないと正確に解けない問題です。乗法公式が不安に人はまずそちらが自信がつくまで練習しましょう。つなぎ目がマイナスのときは後ろのほうの展開結果がすべて符号が変わることも

  • 文字式(式の値)

    式の値、つまり文字の数字を代入して計算する作業は今後の数学には欠かせません。したがって、とても大切な単元です。慣れるまでは省かれた×、÷の記号をもとに戻してゆっくり計算するようにしましょう。マイナスにも注意してくださいね。

  • 式の計算(式の説明①)

    この単元は文字式で表して文章で説明しなければいけないので最初は戸惑うと思います。ですが、その表し方と書き方を覚えればだれでもできるようになります。何度も繰り返し練習すれば自然に覚えますし、パターンが限られているので逆に点取り問題になりますよ

  • 2乗に比例する関数(総合問題)

    2乗に比例する関数について、これまで学習したすべての内容が凝縮された問題です。図形の知識が要求されるものもあり、難しいものもありますが、これがサクッと解けるようになったら入試問題も自信もって挑戦できます。難しい問題も慣れれば簡単に思えるよう

  • 正の数・負の数(四則計算)

    正の数・負の数の計算の総決算です。加減乗除すべての計算が定着していない人はまずそちらの練習をしたうえでこちらに挑戦してください。累乗がある場合はまずそれを計算しますが、マイナスの扱いに注意が必要です。今回の単元が定着できたら、ひとまず正の数

  • 正三角形、正方形を利用した合同の証明

    合同の証明の中でも少し難しいパターンの問題です。特に等しい角度を示す方法は何度も練習して定着させましょう。複雑な図ほどどの部分を見るかがポイントとなりますので、そういった図形の見方も養いましょう。

  • 平方根(ルートの四則計算)

    ルートの計算の加減乗除、つまり四則混合の問題です。それぞれの基礎ができていれば自信をもって取り組んでください。自信がない人はまずは前にもどって加減乗除それぞれの計算方法を復習しましょう。ルートは常に簡単にできないかどうかを考えてくださいね。

  • 関数(反比例のグラフ)

    反比例のグラフは曲線なので、できるだけ多くの点を取ることできれいなグラフが描けます。掛けて比例定数になるようにxとyの値を座標として取っていくことになります。双曲線ということで2本の曲線でワンセットになることも注意しておきましょう。

  • 連立方程式(計算②)

    連立方程式の加減法の第2弾です。2式を足したり引いたりするには、xかyの係数を等しくする必要があります。そのために、どちらかの式の全項に何かを掛けて係数を揃えます。符号にも注意して正確に計算できるようにたくさん練習してくださいね。

  • 2乗に比例する関数(座標と面積)

    グラフ上にできた図形の面積を求めるには、必ず各頂点の座標が必要です。その座標の求め方をしっかり定着させてください。慣れるまで難しく感じるかもしれませんが、できるようになると楽しいですよ。

カテゴリー一覧
商用