searchカテゴリー選択
chevron_left

カテゴリーを選択しなおす

cancel
プロフィール
PROFILE

日比谷生の集いさんのプロフィール

住所
未設定
出身
未設定

自由文未設定

ブログタイトル
日比谷高校のススメ
ブログURL
http://hibiyastudy.hatenablog.com/
ブログ紹介文
東大合格者数52人、公立高校一位を成し遂げた日比谷高校の卒業生たちが、日比谷高校のディープな実状や、日比谷高校のみならず難関校の入試の攻略法や勉強の要点を紹介します。数学成分多め。
更新頻度(1年)

44回 / 365日(平均0.8回/週)

ブログ村参加:2019/09/24

本日のランキング(IN)
読者になる

新機能の「ブログリーダー」を活用して、日比谷生の集いさんの読者になりませんか?

ハンドル名
日比谷生の集いさん
ブログタイトル
日比谷高校のススメ
更新頻度
44回 / 365日(平均0.8回/週)
読者になる
日比谷高校のススメ

日比谷生の集いさんの新着記事

1件〜30件

  • 大学を知ろう!文系編-経済学部編

    大学を知ろう、文系編は学部ごとの紹介をします。 理系編はこちら 理系-理学部はこちら 経済学部 文系の学部は非常に多種多様です。 ・経済学部・政治学部・法学部・文学部・商学、経営学部・心理学部・社会学部… 今回もこのブログメイン筆者の元同級生、経済学部出身の日比谷卒業生からコメントをいただきました。 経済学部 経済学部について 政治経済などの分類をする大学もありますが、筆者在学中の大学では特に分類がないため、経済学部一般としてのお話をさせていただきます。なお、大学について深い理解があるわけではないので、参考程度に受け取っていただければと思います。 経済学部で学ぶこと 経済学部ではなにを学んでい…

  • 大学を知ろう!理系-理学部編

    大学を知ろう!理系編 今回は理学部ついて紹介します。 理学部はおもに ・数学科・物理学科・化学科・生物学科 などがあります。大学によって学科の名称が異なったり、これら以外の学科が設置されていることもあります。 今回は、化学科、生物学科に進んだ同級生から各学科のコメントをいただきました。 物理学科のコメントはまだ交渉中です。 数学科 勉強内容 数学科にむいている人 中高生のうちからこんな勉強をして欲しい 化学科 勉強内容 必要な高校内容の知識 化学科に向いている人 中高生のうちからこんな勉強をしてほしい 生物学科 生物学科にむいている人 中高生のうちからこんな勉強をして欲しい 数学科 大学の数学…

  • 【数学小話】cosθ=2 は複素数の範囲内で解ける

    今回の記事は数IIBまでの範囲でぎり理解可能な内容です。できれば数IIIまでの知識を要求します。 今回は複雑な式が多く、すいすい読むのは厳しいかと思われます。ぜひ紙とペンを用意して手を動かしながらお楽しみください。 目的は、 が複素数の範囲内でどう解けるか、そもそも複素数における三角関数とは、を高校生で理解できるように書くことです。毎回「しーた」と打って変換するのが面倒なのでθの代わりにzを使います。 目次 三角関数の定義 複素三角関数 cosz=2を解く 複素対数関数の定義 補足 今回登場した関数 高校数学で登場する三角関数sin, cos は、値域は-1以上1以下です。数IIにおける三角関…

  • 大学を知ろう!理系編

    新型コロナウイルスによりいつもより早い春休みに突入した皆様、いかがお過ごしでしょうか。今日はそんな暇な日比谷生やこれから日比谷高校を目指す方へ、大学の勉強はどのようなものかを紹介するシリーズを発信します。この機会に、自分の大学受験、進路について考えてみてはいかがでしょうか。このシリーズが皆さまの進路決めの一助になることを願っています。 もしあなたは理系なら ・理学 ・工学 ・農学部 ・医学部、薬学部、歯学部 ・教育学部 もしあなたは理系なら 理系と一口に言っても、その中身は多種多様です。もし理系の大学生になると決意したならば、たいてい以下の5つの学部のどれかを目指すことになります。 ・理学部・…

  • 【数学小話】続 3:4:5の直角三角形の鋭角は何度?

    前回 【数学小話】3:4:5の直角三角形の鋭角は何度? 今回は高校生向けです。春休みに早く突入して暇を持て余す高校生は、ぜひ式を一つ一つ追いながらチャレンジしてみてください。 前回は3:4:5の直角三角形の鋭角が(無理数)度であることを示しました。方針としては、(有理数)度であると仮定して背理法で示しました。その証明はおおまかに以下の通りです。 このように鋭角をθと置きます。「θが(有理数)度」=「θは(有理数)×πラジアン」であることから、と書けたと仮定します。すると、となるはずです。qπは(整数)×πなので、cosが±1になるわけです。しかし、cosθ=3/5にcosの加法定理を繰り返し用…

  • 【数学小話】1+√2が解なら必ず1-√2も解になる?

    2次方程式の解の公式はこんな形をしていました。 これを習い、そして2次方程式を解く計算問題をたくさん解いた当時、「二次方程式が と表される数を解に持つとき、かならず も解にもつのか?」と疑問に思いました。実際、この予想は正しいです。今回はその証明と、さらに進んで、方程式が複素数 を解に持つとき、それと共役な複素数 も解であるということなども見ていきます。 に対して のことを共役無理数、 に対して のことを共役複素数、などと言います。 注:この記事では、方程式と言えば、という形をしたもの、つまり「n次方程式」を指します。などといった方程式は考えません。 目次 具体例 係数が有理数ならOK 定理1…

  • 【数学小話】1+1=2の証明の難しさ、数学と哲学

    この記事はこちらの続編とまでは行きませんが、非常に関連しているのでまだお読みでない方は、さきにこちらをご覧ください。 【数学小話】当たり前なことほど示すのが難しいよねって話 こちらの記事の最後で少し触れましたが、「1+1=2の理由として、1個の石と1個の石を合わせると2個の石になるから」というのは少し微妙なのです。今回はその話について。 1+1=2の証明の難しさ 1つと1つを合わせたら2つ 数学としての1+1=2 自然数の定義 ペアノの公理 まとめと次回予告 1+1=2の証明の難しさ 1+1=2の証明がなぜ難しいのかというと、 あまりにも当然すぎる内容であるから です。本来の証明問題、「『Aが…

  • 日比谷高校2020年(令和2年)英語の解説

    令和2年に行われた日比谷高校の入試における英語試験問題のうち、面白いと感じられた問題を取り上げて解説していきます。英作文に関しては実践的なアドバイスを載せていますので参考にしてください。 日比谷高校2020年(令和2年)国語の解説日比谷高校2020年(令和2年)数学の解説 日比谷高校2019年(平成31年)国語の解説日比谷高校2019年(平成31年)数学の解説 日比谷高校2018年(平成30年)国語の解説+α日比谷高校2018年(平成30年)数学の解説 日比谷高校2018年(平成30年)英語の解説 今年の入試問題の全体概観 大問2 大問3 大問4 時間配分 今年の入試問題の全体概観 難易度 .…

  • 日比谷高校2020年(令和2年)英語の解説

    令和2年に行われた日比谷高校の入試における英語試験問題について、中でも、面白いと感じられた問題を取り上げて解説していきます。英作文に関しては実践的なアドバイスを載せていますので参考にしてください。 今年の入試問題の全体概観 難易度 ... 難化(前年比) 分量 ... 増加(前年比) 大問2... 平年並み 大問3...難化 大問4...難化 今年の英語は難しかったですね。量・質ともにここ数年の中で最も厳しい問題だったと思います。大問3で顕著ですが、設問の形式も答え難いものになり、内容一致問題における該当箇所も例年より細かい個所を捉えなければ正答に至ることができないものが増えました。また、ひっ…

  • 日比谷高校2020年(令和2年)国語の解説

    令和になって最初の日比谷高校入試。その国語の解説記事です。 日比谷高校2020年(令和2年)数学の解説 日比谷高校2019年(平成31年)国語の解説日比谷高校2019年(平成31年)数学の解説 日比谷高校2018年(平成30年)国語の解説+α日比谷高校2018年(平成30年)数学の解説 日比谷高校2018年(平成30年)英語の解説 大問1:漢字の読み(赤字は難問) 大問2:漢字の書き(赤字は難問) 大問3:小説文 大問4:論説文 大問5:現古融合問題 解説 国語の解説記事は本文、問題文を掲載しません。実際に日比谷高校を受験した方や、問題を持っていて、これから演習するつもりの方へ向けたものとなっ…

  • 日比谷高校2020年(令和2年)数学の解説

    令和になって最初の日比谷高校入試。その数学の解説記事です。 日比谷高校2019年(平成31年)国語の解説日比谷高校2019年(平成31年)数学の解説 日比谷高校2018年(平成30年)数学の解説日比谷高校2018年(平成30年)国語の解説+α日比谷高校2018年(平成30年)英語の解説 このページは前半が問題の解説、後半が講評となっています。 解説 大問1 大問2 大問3 大問4 講評 各問題の難易度 // 解説 今年の数学も、難しい問題、合否が分かれるような問題は解説し、簡単な問題は触れません。 大問1 小問集合。ここは毎年内容がぶれていません。 (4) 2つのさいころを投げる問題なので、3…

  • 中学生でも解ける外伝 高校入試難問76★★ 早大実業高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 今年の早実から、あまり見慣れない問題を紹介。2020年度の早実、問3から。 問題★★ (1) についての方程式 が解をもたないための条件を、定数a,bを用いて表せ。 …

  • 【数学小話】格子点を数える問題の解法研究

    数Bの数列の単元で登場するやや難しめの問題として、格子点の個数を求める問題があります。このタイプの問題の解法を研究してみます。 問題 解法①xまたはyを固定する 解法②長方形内にある格子点の半分 解法③nを1増やしたときの格子点の増加に注目する 解法④ズル?穴埋めであることを悪用 問題 を自然数とする。 を満たす整数の組 の個数は、である。 n=2の場合の図を用意しました。問題の不等式はすべて=がついていないので、この青の三角形の内部(周を含まない)にある格子点の個数を求めることになります。 今日はこの問題を複数の解法で求めます。問題によって不等号に=が入っていたり入っていなかったりしますが、…

  • 中学生でも解ける外伝 高校入試難問75★ 慶應義塾高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 慶応義塾の過去問から因数分解を1つ。この記事を書いたあとに気づいたのですが、もう慶應義塾高校の入試は終わってますね。 問題★ を因数分解せよ。 ヒント、着眼点 高校入…

  • 【数学小話】当たり前なことほど示すのが難しいよねって話

    我々はあまり深く考えずに多くのことを まあそれは当然なりたつでしょう。当たり前だ。 と雑に片付けてしまいがちです。突き詰めていくと本当に成り立つとは簡単に言い切れないことはたくさんあります。例えば、このようなことを聞いたことがありませんか。 「1+1=2の証明は難しい」 確かに、1+1=2の証明は大学で学ぶ概念を理解しないと理解できないといわれているように、かなり難しい内容です。これはあまりにも極端な例ですが、このように、当然のこととして受け入れているものほど、「それはどうして成り立つの」と問われればきちんと根拠がしめせないものです。今回はそのような例をいくつか見て、そのような当たり前に思える…

  • 中学生でも解ける外伝 高校入試難問74★★ 東大寺学園高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 問題★★ 正の数 の整数部分を と表す。例えば、 である。正の数 がを満たすとき、 および を求めよ。 ヒント、着眼点 ②の方が複雑ですから、①から攻めるのがよいでし…

  • 中学生でも解ける外伝 高校入試難問73★★★ 慶應志木高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 問題★★ 図のように、3つの円A、B、Cが互いに外接していて、円Aと円Bの共通外接線lと円Bと円Cの共通外接線mは平行である。また、円Aと円Cの共通外接線nとの接線を…

  • 中学生でも解ける外伝 高校入試難問72★ 灘高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 問題★ は、 を超えない最大の整数を表すものとする。 の方程式 を満たす のうち、最小のものを求めよ。 ヒント、着眼点 定義より は必ず整数となるから、 はともに整数…

  • 中学生でも解ける外伝 高校入試難問71 灘高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 問題★ AB=9cm、BC=8cmの長方形ABCDと、この長方形の周および内部に含まれる円P、円Qがある。図のように、円Pは2辺AB、BCで、円Qは2辺、CD、DAで…

  • 中学生でも解ける外伝 高校入試難問70 巣鴨高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 問題★★★ 図のように、∠ABC=90°の直角三角形ABCがあり、∠BAD=20°、∠CAD=30°である。BD=1、CD=aとするとき、ADの長さをaを用いて表せ。…

  • 中学生でも解ける外伝 高校入試難問69 渋谷教育学園幕張高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 問題★★ 正の整数xに対して、1からxまでの整数のうち、xとの最大公約数が1であるものの個数をf(x)とおく。例えば、f(5)は、1から5のうち5との最大公約数が1で…

  • 中学生でも解ける外伝 高校入試難問68 早稲田実業高

    新年になったので、高校入試が終わるまで高校入試の難問を紹介することにします。 ↓↓↓ 去年もやっています ↓↓↓ 30★★ 巣鴨高 31★★ 早稲田実業高 32★★ 城北埼玉高 33★★ ラ・サール高 34★ 慶應志木高 35★ 灘高 36★★★巣鴨高 37★★ 法政大学女子高 38★★ 都立西高 39★★ 都立日比谷高 40★ 都立国立高 41★ 学芸大附属高 42★ 計算問題① 43★★ ラ・サール高校 44★★ 計算問題② 問題★ nは自然数とする。 が素数となるとき、Pの値を求めよ。 ヒント、着眼点 整数問題、特に素数が絡む問題はたいてい因数分解します。 とできます。 以下、解答 //…

  • 【数学小話】3:4:5の直角三角形の鋭角は何度?

    3辺が全て整数である直角三角形の最初の例として有名な3:4:5の直角三角形。1:1:√2とか1:2:√3とか、鋭角が特別な値なものも習いますが、この3:4:5の直角三角形は鋭角が何度であるかは中学校では一切触れられません。今回は高校数学までの知識で、この角度を考察していきます。 問題. 上の図におけるθは何度だろうか? 1. (整数)度 2. 整数ではなく、(有理数)度 3. (無理数)度 答えは3です。角度は(無理数)度です。ちなみに、θ≒53.130102354...度です。 方針、下準備 証明 step1 step2 補題 step3 考察 他の整数比の直角三角形 方針、下準備 度数法で…

  • 中学生でも解ける大学入試数学67 2016年埼玉大

    約数の個数、総和は難関高校入試にしれっと登場しますが、普通に高校数学の範囲ですよね。 問題★★ 自然数nに対して、nの正の約数の総和をと書くことにする。 (1) kを自然数、pを3以上の素数とするとき、 を求めよ。 (2) を求めよ。 (3) 2016の正の約数nで、 となるものを全て求めよ。 ヒント、着眼点 約数の総和を求める公式、難関高校受験では個数を求める公式とセットで習います。 約数の個数、総和の公式 整数nが、 と素因数分解されるとき、約数の個数は、 であり、約数の総和は、 である。 これを使えば、(2)までは容易に解けます。(3)が少し考えさせられる問題です。 また、(1)で、これ…

  • 中学生でも解ける大学入試数学66 2013年埼玉大

    初めて見ると、こんな問題が大学入試にあるの?と思うかもしれません。 問題★★ (1) の大小を比較せよ。 (2) の大小を比較せよ。 ヒント、着眼点 問題文は誰でも理解できるほど簡単な問題ですが、どう大小を評価するのでしょうか。当然、直接計算できません。 指数といえば、高2の数Bで登場するlogが使いたくなりますが、この問題に「ただし とする」のように、logの具体的な値が与えられていないので実質logは使えません。 ではヒントを。 指数がそろっていれば、大小は明らかに比較できます。例えば、 であれば後者の方が大きいです。20乗するもとの数自体が大きいからです。 以下、解答 // 解答 (1)…

  • 日比谷高校漢字講座 Part 9

    就活を終えてから半年間、卒論に忙殺され、長らく更新をサボっておりました。申し訳ありません。 また気を引き締めて、来年2月21日の受験本番に備え、受験生の皆さんの当日点を1点でも多くするべく、良質な問題を出していきます。 第一問 次の漢字の読みを答えよ。 1. 契約を反故にする。 2. 惜別の思い。 3. 友人の車に便乗する。 4. 老舗の和菓子屋。 5. 千客万来 第二問 次のひらがなを漢字に直せ。 1. 犯人を明らかにするしょうさが無い。 2. ふくろこうじに入る。 3. すんぽうを確認する。 4. 彼女はこの役所の生きじびきだ。 5. 彼はひんこうほうせいだ。 以下、答えになります。 第一…

  • 【数学小話】完全順列、プレゼント交換会の総数と確率

    こんなところにも自然対数eが登場するという、不思議な例を見てみます。 問題 漸化式を作る 一般項を求める プレゼント交換がうまくいく確率 1/eに収束する理由 問題 n個の整数 1,2,3,...,nを、1番目に1が、2番目に2が、...、n番目にnが来ないように、1列に並べるのは何通りか。 これは、 n人がプレゼントを持ち寄って、ランダムに配ったとき、全員が自分のでないプレゼントを受け取るような配り方は何通りあるか。 と同じ問題です。 完全順列 n個の整数 1,2,3,...,nを、i番目(1≦i≦n)にiが来ないように1列に並べる順列、これを完全順列といい、完全順列の総数をモンモール数とい…

  • 中学生でも解ける大学入試数学65 2017年関西大(改)

    若干簡単な問題になるよう、数字を変えています。 問題★★ (1) コインを8回投げて、表が一度も出ない確率を求めよ。 (2) コインを8回投げて、表の出る回数がちょうど4回である確率を求めよ。 (3) コインを8回投げて、表の出る回数が4回以下である確率を求めよ。 ヒント、着眼点 (3)まで全て樹形図を描くことで解けなくはありません。かなり広いスペースが必要になりますが。ここでは、このように考えてみます。 コインを6回投げたときの表裏の出方は何通りあるかというと、 28=256通りです。この256通りのうち、条件を満たすような出方がいくつあるかをうまく考えます。 表がちょうど4回でる確率なら、…

  • 中学生でも解ける大学入試数学64 2018年日本大

    小問集合から1つ。 問題★ 係数が整数の2次方程式 は を1つの解にもつ。A,Bを求めよ。また、 のとき、 の値を求めよ。 ヒント、着眼点 (1) A,Bはが整数であることに注意。a,bが有理数で、nが平方数でないとき、 ならばということを使います。 実はこれはマーク問題でして、答えさえ出ればよいので、若干のズルをしてもいいかもしれません。 (2) を にそのまま代入すると、ほぼ100%計算ミスをします。"次数下げ"というテクニックがあります。 以下、解答 // 解答 (1) A=3, B=1 (2) 解説 (1) 正攻法 に を代入して、 よって、すなわち (1) ズル を解に持つなら、どう…

  • 【数学小話】この値は有限or無限?美しい級数の世界

    日常生活で、この足し算は無限になるか、有限の値に収まるか、気になる瞬間はたくさんありますよね。ということで、有限になるか、無限になるかのクイズを用意してみました。 目次 級数クイズ 問1. 調和級数 問2. 等比級数 問3. 交代級数 問4. バーゼル問題 問5. 数列の逆数の和 式をすっきりさせる記号Σ 寄り道:ゼータ関数と解析接続 級数クイズ 級数は簡単にいうと、「無限個の足し算」のことです。 問1. 調和級数 これは有限か無限か。 答1. 無限 これは有名な調和級数で、足されていく値は0に近づくのに、和は無限大に発散するものです。このように示すことができます。 このように調和級数を下から…

カテゴリー一覧
商用